Answer:
A vision statement describes what a company desires to achieve in the long-run, generally in a time frame of five to ten years, or sometimes even longer. It depicts a vision of what the company will look like in the future and sets a defined direction for the planning and execution of corporate-level strategies.
Explanation:
While companies should not be too ambitious in defining their long-term goals, it is critical to set a bigger and further target in a vision statement that communicates a company’s aspirations and motivates the audience. Below are the main elements of an effective vision statement:
-Forward-looking
-Motivating and inspirational
-Reflective of a company’s culture and core values
-Aimed at bringing benefits and improvements to the organization in the future
-Defines a company’s reason for existence and where it is heading
Answer:
The design process is at the verify phase of Design for Six Sigma
Explanation:
In designing for Six Sigma, DFSS, is a product or process design methodology of which the goal is the detailed identification of the customer business needs by using measurements tools such as statistical data, and incorporating the identified need into the created product which in this case is the hydraulic robot Kristin Designed
Implementation of DFSS follows a number of stages that are based on the DMAIC (Define - Measure - Analyze - Improve) projects such as the DMADV which stand for define - measure - analyze - verify
Therefore, since Kristin is currently ensuring that the robot is working correctly and meeting the needs of her client the design process is at the verify phase.
Answer:
a) The Net power developed in this air-standard Brayton cycle is 43.8MW
b) The rate of heat addition in the combustor is 84.2MW
c) The thermal efficiency of the cycle is 52%
Explanation:
To solve this cycle we need to determinate the enthalpy of each work point of it. If we consider the cycle starts in 1, the air is compressed until 2, is heated until 3 and go throw the turbine until 4.
Considering this:




Now we can calculate the enthalpy of each work point:
h₁=281.4KJ/Kg
h₂=695.41KJ/Kg
h₃=2105KJ/Kg
h₄=957.14KJ/Kg
The net power developed:

The rate of heat:

The thermal efficiency:

Answer:
The pressure drop is 269.7N/m^2
Explanation:
∆P = ∆h × rho × g
∆h = 3.2cm = 3.2/100 = 0.032m, rho = 860kg/m^3, g = 9.8m/s^2
∆P = 0.032×860×9.8 = 269.7N/m^2
Answer: D
Explanation: When you change your transmission fluid you change your filter. When you do that you clean where the filter was. Then you can put the new filter on and the new fluid.