Answer:
See explanation
Explanation:
The magnetic force is
F = qvB sin θ
We see that sin θ = 1, since the angle between the velocity and the direction of the field is 90º. Entering the other given quantities yields
F
=
(
20
×
10
−
9
C
)
(
10
m/s
)
(
5
×
10
−
5
T
)
=
1
×
10
−
11
(
C
⋅
m/s
)
(
N
C
⋅
m/s
)
=
1
×
10
−
11
N
I believe it’s c because you don’t want your gas to run real low, so I think it’s best to do it when your fuel.
Answer:
Glazier
Explanation:
Glaziers are workers who specializes in cutting and installation of glass works.
They work with glass in various surfaces and settings, such as cutting and installing windows and doors, skylights, storefronts, display cases, mirrors, facades, interior walls, etc.
Thus, the type of worker the contractor will hire for this project is a Glazier
Answer:
Yes, it is possible to maintain a pressure of 10 kPa in a condenser that is being cooled by river water that is entering at 20 °C because this temperature (20 °C) of the external cooling water is less than the saturation temperature of steam which is which is 45.81 °C, and heated by a boiler; as a result of this condition, coupled with the assumption that the turbine, pump, and interconnecting tube are adiabatic, and the condenser exchanges its heat with the external cooling river water, it possible to maintain a pressure of 10 kPa.
The height at which the mass will be lifted is; 3 meters
<h3>How to utilize efficiency of a machine?</h3>
Formula for efficiency is;
η = useful output energy/input energy
We are given
η = 60% = 0.6
Input energy = 4 KJ = 4000 J
Thus;
0.6 = useful output energy/4000
useful output energy = 0.6 * 4000
useful output energy = 2400 J
Work done in lifting mass(useful output energy) = force * distance moved
Useful output energy = 800 * h
where h is height to lift mass
Thus;
800h = 2400
h = 2400/800
h = 3 meters
Read more about Machine Efficiency at; brainly.com/question/3617034
#SPJ1