Answer with Explanation:
1) The advantages of fission energy are:
a) Higher concentration of energy : Concentration of energy or the energy density is defined as the amount of energy that is produced by burning a unit mass of the fuel. The nuclear energy obtained by fission has the highest energy density among all the other natural sources of energy such as coal,gas,e.t.c.
b) Cheap source of energy : The cost at which the energy is produced by a nuclear reactor after it is operational is the lowest among all the other sources of energy such as coal, solar,e.t.c
2) The disadvantages of fission energy are:
a) Highly dangerous residue: The fuel that is left unspent is highly radioactive and thus is very dangerous. Usually the residual material is taken deep into the earth for it's disposal.
b) It has high initial costs of design and development: The cost to design a nuclear reactor and to built one after it is designed is the most among all other types of energy sources and requires highly skilled personnel for operation.
you face is A certain vehicle loses 3.5% of its value each year. If the vehicle has an initial value of $11,168, construct a model that represents the value of the vehicle after a certain number of years. Use your model to compute the value of the vehicle at the end of 6 years.
Answer: The net force in every bolt is 44.9 kip
Explanation:
Given that;
External load applied = 245 kip
number of bolts n = 10
External Load shared by each bolt (P_E) = 245/10 = 24.5 kip
spring constant of the bolt Kb = 0.4 Mlb/in
spring constant of members Kc = 1.6 Mlb/in
combined stiffness factor C = Kb / (kb+kc) = 0.4 / ( 0.4 + 1.6) = 0.4 / 2 = 0.2 Mlb/in
Initial pre load Pi = 40 kip
now for Bolts; both pre load Pi and external load P_E are tensile in nature, therefore we add both of them
External Load on each bolt P_Eb = C × PE = 0.2 × 24.5 = 4.9 kip
So Total net Force on each bolt Fb = P_Eb + Pi
Fb = 4.9 kip + 40 kip
Fb = 44.9 kip
Therefore the net force in every bolt is 44.9 kip
Answer:
Observational Skills
Explanation:
Observing the area also known as scanning the scene