Explanation:
Mass of the crate, m = 68 kg
We need to find the resulting acceleration if :
(a) Force, P = 0
P = m a
⇒ a = 0
(b) P = 181 N
(c) P = 352 N
Hence, this is the required solution.
Answer:
Lorentz force, the force exerted on a charged particle q moving with velocity v through an electric E and magnetic field B. The entire electromagnetic force F on the charged particle is called the Lorentz force (after the Dutch physicist Hendrik A. Lorentz) and is given by F = qE + qv × B.
Explanation:
N/A
Answer:
I(x) = 1444×k ×
I(y) = 1444×k ×
I(o) = 3888×k ×
Explanation:
Given data
function = x^2 + y^2 ≤ 36
function = x^2 + y^2 ≤ 6^2
to find out
the moments of inertia Ix, Iy, Io
solution
first we consider the polar coordinate (a,θ)
and polar is directly proportional to a²
so p = k × a²
so that
x = a cosθ
y = a sinθ
dA = adθda
so
I(x) = ∫y²pdA
take limit 0 to 6 for a and o to for θ
I(x) = y²p dA
I(x) = (a sinθ)²(k × a²) adθda
I(x) = k da × (sin²θ)dθ
I(x) = k da × (1-cos2θ)/2 dθ
I(x) = k ×
I(x) = k × × (
I(x) = k × ×
I(x) = 1444×k × .....................1
and we can say I(x) = I(y) by the symmetry rule
and here I(o) will be I(x) + I(y) i.e
I(o) = 2 × 1444×k ×
I(o) = 3888×k × ......................2
Answer:
The relative speed of 1 relative to 2 is 0.88c
Explanation:
In relativistic mechanics the relative speed between 2 objects moving in different direction is given by
Since it is given that
Applying values in the formula we get