Answer : The correct option is, (e) eg = trigonal planar, mg = trigonal planar
Explanation :
Formula used :
![\text{Number of electron pair}=\frac{1}{2}[V+N-C+A]](https://tex.z-dn.net/?f=%5Ctext%7BNumber%20of%20electron%20pair%7D%3D%5Cfrac%7B1%7D%7B2%7D%5BV%2BN-C%2BA%5D)
where,
V = number of valence electrons present in central atom
N = number of monovalent atoms bonded to central atom
C = charge of cation
A = charge of anion
The given molecule is, 
![\text{Number of electron pair}=\frac{1}{2}\times [4+3-1]=3](https://tex.z-dn.net/?f=%5Ctext%7BNumber%20of%20electron%20pair%7D%3D%5Cfrac%7B1%7D%7B2%7D%5Ctimes%20%5B4%2B3-1%5D%3D3)
That means,
Bond pair = 3
Lone pair = 0
The number of electron pair are 3 that means the hybridization will be
and the electronic geometry of the molecule will be trigonal planar.
Hence, the electron geometry (eg) and molecular geometry (mg) of
is, trigonal planar and trigonal planar respectively.
step one
calculate the % of oxygen
from avogadro constant
1moles = 6.02 x 10 ^23 atoms
what about 4.33 x10^22 atoms
= ( 4.33 x 10^ 22 x 1 mole ) / 6.02 10^23= 0.0719 moles
mass= 0.0719 x16= 1.1504 g
% composition is therefore= ( 1.1504/3.25) x100 = 35.40%
step two
calculate the % composition of chrorine
100- (25.42 + 35.40)=39.18%
step 3
calculate the moles of each element
that is
Na = 25.42 /23=1.1052 moles
Cl= 39.18 /35.5=1.1037moles
O= 35.40/16= 2.2125 moles
step 4
find the mole ratio by dividing each mole by 1.1037 moles
that is
Na = 1.1052/1.1037=1.001
Cl= 1.1037/1.1037= 1
0=2.2125 = 2
therefore the empirical formula= NaClO2
Should be B, because one rotation is a day one revolution is a day(also to check I looked up the difference).
True, because most chemical reactions have more moles but not really.
Also that they decompose better. "not really"