Answer: increase in thermal heat
explanation: In order to change the state, more energy is needed.
When you want to go from a lower state (solid) to a higher state (liquid) then you need more energy. and more energy means more heat in this case. if it was going from liquid to solid, you would need less thermal energy.
LMBO, for science.
Answer:
<em>The increase in kinetic energy leads to leakage of water from the syringe. When the outside temperature is more than the liquid temperature, say the syringe is out in sunshine, then the liquid becomes slightly warmer.</em>
Answer:
The rate of disappearance of
is 0.0766 M/s.
Explanation:

Rate of the reaction = R
![R=-\frac{1}{1}\frac{d[C_2H_4]}{dt}=-\frac{1}{3}\frac{d[O_2]}{dt}](https://tex.z-dn.net/?f=R%3D-%5Cfrac%7B1%7D%7B1%7D%5Cfrac%7Bd%5BC_2H_4%5D%7D%7Bdt%7D%3D-%5Cfrac%7B1%7D%7B3%7D%5Cfrac%7Bd%5BO_2%5D%7D%7Bdt%7D)
[te]R=\frac{1}{2}\frac{d[CO_2]}{dt}=\frac{1}{2}\frac{d[H_2O]}{dt}[/tex]
Rate of disappearance of
=0.23 M/s
Rate of disappearance of 

R =0.07666 M/s
Rate of disappearance of 
![\frac{d[C_2H_4]}{dt}=1\times 0.23 m/s=0.0766 M/s](https://tex.z-dn.net/?f=%5Cfrac%7Bd%5BC_2H_4%5D%7D%7Bdt%7D%3D1%5Ctimes%200.23%20m%2Fs%3D0.0766%20M%2Fs)
The rate of disappearance of
is 0.0766 M/s.
Answer: The intermolecular forces increase with increasing polarization of bonds. Boiling point increases with molecular weight, and with surface area. The three major types of intermolecular interactions are dipole–dipole interactions, London dispersion forces (these two are often referred to collectively as van der Waals forces), and hydrogen bonds. Intermolecular forces are much weaker than the intramolecular forces of attraction but are important because they determine the physical properties of molecules like their boiling point, melting point, density, and enthalpies of fusion and vaporization.In order from strongest to weakest, the intermolecular forces given in the answer choices are: ion-dipole, hydrogen bonding, dipole-dipole, and Van der Waals forces. Ionic bonding is stronger than any of the given intermolecular forces, but is itself NOT an intermolecular force.
Hope this helps.. Stay safe and have a Merry Christmas!!!!!!!!!! :D