1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Orlov [11]
4 years ago
14

Write the chemical equation of the polymerization reaction to synthesize PS

Engineering
1 answer:
marin [14]4 years ago
6 0

Explanation:

Styrene is  a vinyl monomer in which there is a carbon carbon double bond.

The polymerization of the styrene, which is initiated by using a free radical which reacts with the styrene and the compound thus forms react again and again to form polystyrene (PS).

The equation is shown below as:

\begin{matrix}& C_6H_5 \\&|\\n H_2C & =CH\end{matrix}        ⇒                \begin{matrix}&C_6H_5 \\&|\\ -[-H_2C & -CH-]-_n\end{matrix}

You might be interested in
Air modeled as an ideal gas enters a well-insulated diffuser operating at steady state at 270 K with a velocity of 180 m/s and e
ZanzabumX [31]

Answer:

exit temperature 285 K

Explanation:

given data

temperature T1 = 270 K

velocity = 180 m/s

exit velocity =  48.4 m/s

solution

we know here diffuser is insulated so here heat energy is negleted

so we write here energy balance equation that is

0 = m (h1-h2) + m ×  (\frac{v1^2}{2}-\frac{v2^2}{2})   .....................1

so it will be

h1 + \frac{v1^2}{2} = h2 + \frac{v2^2}{2}      .....................2

put here value by using ideal gas table

and here for temperature 270K

h1 = 270.11 kJ/kg

270.11 + \frac{180^2\times \frac{1}{1000}}{2} = h2 + \frac{48.4^2\times \frac{1}{1000}}{2}  

solve it we get

h2 = 285.14 kJ/kg

so by the ideal gas table we get

T2 = 285 K

4 0
3 years ago
A closed, rigid tank is filled with a gas modeled as an ideal gas, initially at 27°C and gauge pressure of 300 kPa. The gas is h
Sergio [31]

Answer:

the final temperature is 77.1 °C

Explanation:

Given the data in the question;

Initial temperature; T₁ = 27°C = ( 27 + 273)K = 300 K

Initial absolute pressure P₁ = 300 kPa = ( 300 + 101.325 )kPa = 401.325 kPa

Final absolute pressure P₂ = 367 kPa = ( 367 + 101.325 )kPa = 468.325 kPa

Now, to calculate the final temperature, we use the ideal gas equation;

P₁V/T₁ = P₂V/T₂

but it is mentioned that the rigid tank is closed,

so the volume is the same both before and after.

Change in volume = 0

hence;

P₁/T₁ = P₂/T₂

we substitute

401.325 kPa / 300 K = 468.325 kPa / T₂

T₂ × 401.325 kPa  = 300 K × 468.325 kPa

T₂ = [ 300 K × 468.325 kPa ] / 401.325 kPa

T₂ = 140497.5 K / 401.325

T₂ =  350.08 K

T₂ = ( 350.08 - 273 ) °C

T₂ = 77.1 °C

Therefore, the final temperature is 77.1 °C

3 0
3 years ago
All circuits need three basic parts: an energy source, wires, and the object that is going to change the electrical energy into
Radda [10]

load every electric circuit,regardless of where it is or how large or small, has four basic parts: an energy source (ac or dc),a conductor (wire), an electrical load (device), and at least one controller(switch)
7 0
4 years ago
Read 2 more answers
What is an air mass?​
kotegsom [21]

Answer:

An air mass is a body of air with horizontally uniform temperature, humidity, and pressure.

Explanation:

Because it is

8 0
3 years ago
Read 2 more answers
To provide some perspective on the dimensions of atomic defects, consider a metal specimen that has a dislocation density of 105
GenaCL600 [577]

Answer:

62.14\ \text{miles}

6213727.37\ \text{miles}

Explanation:

The distance of the chain would be the product of the dislocation density and the volume of the metal.

Dislocation density = 10^5\ \text{mm}^{-2}

Volume of the metal = 1000\ \text{mm}^3

10^5\times 1000=10^8\ \text{mm}\\ =10^5\ \text{m}

1\ \text{mile}=1609.34\ \text{m}

\dfrac{10^5}{1609.34}=62.14\ \text{miles}

The chain would extend 62.14\ \text{miles}

Dislocation density = 10^{10}\ \text{mm}^{-2}

Volume of the metal = 1000\ \text{mm}^3

10^{10}\times 1000=10^{13}\ \text{mm}\\ =10^{10}\ \text{m}

\dfrac{10^{10}}{1609.34}=6213727.37\ \text{miles}

The chain would extend 6213727.37\ \text{miles}

3 0
3 years ago
Other questions:
  • Someone claims that the shear stress at the center of a circular pipe during fully developed laminar flow is zero. Do you agree
    12·1 answer
  • Is it more difficult to pump oil from a well on dry land or a well under water?Why?
    11·1 answer
  • Velocity and temperature profiles for laminar flow in a tube of radius ro = 10 mm have the form: u(r) = 0.15[1 − (r/ro ) 2 ] T(r
    11·1 answer
  • Air enters the compressor of an ideal Brayton refrigeration cycle at 100 kPa, 270 K. The compressor pressure ratio is 3, and the
    13·1 answer
  • Use the overall heat-transfer resistance presented by the external air and the glass itself to determine the heat flux in W/m2 i
    10·1 answer
  • Which of the following is an example of seeking accreditation?
    7·1 answer
  • An inventor claims to have developed a heat engine that produces work at 10 kW, while absorbing heat at 10 kW. Evaluate such a c
    12·1 answer
  • what is the expected life 1 inch diameter bar machined from AISI 1020 CD Steel is subjected to alternating bending stress betwee
    9·1 answer
  • Poems that focus on one image usually have what purpose? PLEASE HELP MEH!!
    7·2 answers
  • Which of the following characteristics would not give animals an advantage in the ocean?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!