1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tresset [83]
3 years ago
7

Briefly describe the purpose of specifying boundary conditions.

Engineering
1 answer:
lisov135 [29]3 years ago
3 0

Answer:

Given in the explanation

Explanation:

A boundary condition expresses the behavior of a function on the boundary (border) of its area of definition. An initial condition is like a boundary condition, but then for the time-direction. Not all boundary conditions allow for solutions, but usually the physics suggests what makes sense.  

Boundary value is a condition accompanying a differential equation in the solution of physical problems. In mathematical problems arising from physical situations, there are two considerations involved when finding a solution: (1) the solution and its derivatives must satisfy a differential equation, which describes how the quantity behaves within the region; and (2) the solution and its derivatives must satisfy other auxiliary conditions either describing the influence from outside the region (boundary values) or giving information about the solution at a specified time (initial values), representing a compressed history of the system as it affects its future behaviour.  

The problem is that without additional conditions the arbitrariness in the solutions makes it almost useless (if possible) to write down the general solution. We need additional conditions, that reduce this freedom. In most physical problems these are boundary conditions, that describes how the system behaves on its boundaries (for all times) and initial conditions, that specify the state of the system for an initial time t=0.

You might be interested in
An ideal gas mixture has a volume base composition of 40% Ar and 60% Ne (monatomic gases). The mixture is now heated at constant
baherus [9]

[Find the attachment]

6 0
3 years ago
What kind of energy transformation happens when a boy uses energy from a sandwich to run a race​
Semmy [17]
A boy eat a energy of a sandwich to run a race because when they eat a sandwich it helps them to help it mid workout and real nutritions of NYC and bring extra fuel and eating the right thing
I hope this help
4 0
3 years ago
Read 2 more answers
Here, we want to become proficient at changing units so that we can perform calculations as needed. The basic heat transfer equa
netineya [11]

Answer:

9500 kJ; 9000 Btu

Explanation:

Data:

m = 100 lb

T₁ = 25 °C

T₂ = 75 °C

Calculations:

1. Energy in kilojoules

ΔT = 75 °C - 25 °C = 50 °C  = 50 K

m = \text{100 lb} \times \dfrac{\text{1 kg}}{\text{2.205 lb}} \times \dfrac{\text{1000 g}}{\text{1 kg}}= 4.54 \times 10^{4}\text{ g}\\\\\begin{array}{rcl}q & = & mC_{\text{p}}\Delta T\\& = & 4.54 \times 10^{4}\text{ g} \times 4.18 \text{ J$\cdot$K$^{-1}$g$^{-1}$} \times 50 \text{ K}\\ & = & 9.5 \times 10^{6}\text{ J}\\ & = & \textbf{9500 kJ}\\\end{array}

2. Energy in British thermal units

\text{Energy} = \text{9500 kJ} \times \dfrac{\text{1 Btu}}{\text{1.055 kJ}} = \text{9000 Btu}

7 0
3 years ago
Find E[x] when x is sum of two fair dice?
Ksenya-84 [330]

Answer:

When two fair dice are rolled, 6×6=36 observations are obtained.

P(X=2)=P(1,1)=

36

1

​

P(X=3)=P(1,2)+P(2,1)=

36

2

​

=

18

1

​

P(X=4)=P(1,3)+P(2,2)+P(3,1)=

36

3

​

=

12

1

​

P(X=5)=P(1,4)+P(2,3)+P(3,2)+P(4,1)=

36

4

​

=

9

1

​

P(X=6)=P(1,5)+P(2,4)+P(3,3)+P(4,2)+P(5,1)=

36

5

​

P(X=7)=P(1,6)+P(2,5)+P(3,4)+P(4,3)+P(5,2)+P(6,1)=

36

6

​

=

6

1

​

P(X=8)=P(2,6)+P(3,5)+P(4,4)+P(5,3)+P(6,2)=

36

5

​

P(X=9)=P(3,6)+P(4,5)+P(5,4)+P(6,3)=

36

4

​

=

9

1

​

P(X=10)=P(4,6)+P(5,5)+P(6,4)=

36

3

​

=

12

1

​

P(X=11)=P(5,6)+P(6,5)=

36

2

​

=

18

1

​

P(X=12)=P(6,6)=

36

1

​

Therefore, the required probability distribution is as follows.

Then, E(X)=∑X

i

​

⋅P(X

i

​

)

=2×

36

1

​

+3×

18

1

​

+4×

12

1

​

+5×

9

1

​

+6×

36

5

​

+7×

6

1

​

+8×

36

5

​

+9×

9

1

​

+10×

12

1

​

+11×

18

1

​

+12×

36

1

​

=

18

1

​

+

6

1

​

+

3

1

​

+

9

5

​

+

6

5

​

+

6

7

​

+

9

10

​

+1+

6

5

​

+

18

11

​

+

3

1

​

=7

E(X

2

)=∑X

i

2

​

⋅P(X

i

​

)

=4×

36

1

​

+9×

18

1

​

+16×

12

1

​

+25×

9

1

​

+36×

36

5

​

+49×

6

1

​

+64×

36

5

​

+81×

9

1

​

+100×

12

1

​

+121×

18

1

​

+144×

36

1

​

=

9

1

​

+

2

1

​

+

3

4

​

+

9

25

​

+5+

6

49

​

+

9

80

​

+9+

3

25

​

+

18

121

​

+4

=

18

987

​

=

6

329

​

=54.833

Then, Var(X)=E(X

2

)−[E(X)]

2

=54.833−(7)

2

=54.833−49

=5.833

∴ Standard deviation =

Var(X)

​

=

5.833

​

=2.415

4 0
3 years ago
The hot and cold inlet temperatures to a concentric tube heat exchanger are Th,i = 200°C, Tc,i = 100°C, respectively. The outlet
alexgriva [62]

Answer:Counter,

0.799,

1.921

Explanation:

Given data

T_{h_i}=200^{\circ}C

T_{h_o}=120^{\circ}C

T_{c_i}=100^{\circ}C

T_{c_o}=125^{\circ}C

Since outlet temperature of cold liquid is greater than hot fluid outlet temperature therefore it is counter flow heat exchanger

Equating Heat exchange

m_hc_{ph}\left [ T_{h_i}-T_{h_o}\right ]=m_cc_{pc}\left [ T_{c_o}-T_{c_i}\right ]

\frac{m_hc_{ph}}{m_cc_{pc}}=\frac{125-100}{200-120}=\frac{25}{80}=C\left ( capacity rate ratio\right )

we can see that heat capacity of hot fluid is minimum

Also from energy balance

Q=UA\Delta T_m=\left ( mc_p\right )_{h}\left ( T_{h_i}-T_{h_o}\right )

NTU=\frac{UA}{\left ( mc_p\right )_{h}}=\frac{\left ( T_{h_i}-T_{h_o}\right )}{T_m}

T_m=\frac{\left ( 200-125\right )-\left ( 120-100\right )}{\ln \frac{75}{20}}

T_m=41.63^{\circ}C

NTU=1.921

And\ effectiveness \epsilon =\frac{1-exp\left ( -NTU\left ( 1-c\right )\right )}{1-c\left ( -NTU\left ( 1-c\right )\right )}

\epsilon =\frac{1-exp\left ( -1.921\left ( 1-0.3125\right )\right )}{1-0.3125exp\left ( -1.921\left ( 1-0.3125\right )\right )}

\epsilon =\frac{1-exp\left ( -1.32068\right )}{1-0.3125exp\left ( -1.32068\right )}

\epsilon =\frac{1-0.2669}{1-0.0834}

\epsilon =0.799

5 0
4 years ago
Other questions:
  • How an AK 47 gun was works​
    14·1 answer
  • The fouling on the heat exchanger surfaces causes additional thermal resistance, thus decreases the heat transfer rate. a)- True
    11·1 answer
  • Pennfoster Trades Safety test. Would appreciate the help. Thank you in advance. Check the screenshots below for the questions I'
    8·1 answer
  • A civil engineer is analyzing the compressive strength of concrete. The compressive strength is approximately normal distributed
    7·1 answer
  • ... is an actual sequence of interactions (i.e., an instance) describing one specific situation; a ... is a general sequence of
    9·1 answer
  • Select the correct answer. Which statement best describes a hydrogen fuel cell? A This device uses bioethanol as an additive to
    9·2 answers
  • Cite another example of information technology companies pushing the boundaries of privacy issues; apologizing, and then pushing
    9·1 answer
  • “In a trusting relationship, confidential information is kept confidential.” Explain what the limits to confidentiality are and
    14·1 answer
  • Using your knowledge of how an ATM is used, develop a set of use cases that could serve as a basis for understanding the require
    15·1 answer
  • Although studs are sometimes spaced 24" O.C. in residential structures, a spacing of_____ O.C. is more commonly used.
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!