Answer:
The value of d is 183.51 m.
Explanation:
Given that,
Speed of car = 34.0 m/s
Suppose The car race in the circle parallel to the ground surface is at an angle 40°
The radius of circular path 
Normal force acting on the car = N
We need to calculate the value of d
Using component of normal force
The horizontal component of normal force is equal to the gravitational force.
....(I)
The vertical component of normal force is equal to the centripetal force
.....(II)
Divided equation (I) by equation (II)

Put the value of g




Put the value into the formula


Hence, The value of d is 183.51 m.
Space is more hostile to the human body.
Answer:
Her speed is 1.1 m/s, and her velocity is 0 m/s
Explanation:
Speed = Distance covered/Time
Given
Distance = 400m
Time = 6minutes = 6*60 = 360 secs
Substitute the given parameter into the formula;
Speed = 400/360
Speed = 1.1m/s
Since the track is a circular track, the displacement will be zero. She is only moving in a circular path (no direction)
Velocity = Displacement/Time
Velocity = 0/3600
Velocity = 0m/s
Hence her speed is 1.1 m/s, and her velocity is 0 m/s
Answer:
Usually the coefficient of friction remains unchanged
Explanation:
The coefficient of friction should in the majority of cases, remain constant no matter what your normal force is. When you apply a greater normal force, the frictional force increases, and your coefficient of friction stays the same. Here's another way to think about it: because the force of friction is equal to the normal force times the coefficient of friction, friction is increased when normal force is increased.
Plus, the coefficient of friction is a property of the materials being "rubbed", and this property usually does not depend on the normal force.