now you can yourself know to which part of electromagnetic spectrum the photon belongs....
not fitting sharply in green
Answer:
Amplitude = 0.02m
Frequency = 640 Hz
Wavelength, λ = 0.5m
v = 320 m/s
Explanation:
Given the wave equation :
y=0.02 sin2π/0.5 (320t - x) where x and y are in
meters and t is in second
Comparing the above relation with the general wave equation :
y(x, t) = Asin2π/λ(wt - kx)
The amplitude, A = 0.02
From the equation :
2π/0.5 = 2π/λ
λ = 0.5 m
320t = vt
Hence, v = 320 m/s
Recall :
v = fλ
320 = f * 0.5
f = 320 / 0.5
f = 640 Hz
Answer:
T=13.72N
Explanation:
The tension before the ball is released have no angle is in rest at the same axis of the weight so:
∑F=0
Using Newton law in this case the ball is tied so tension before become to swing is
∑F=FN-T=0




Answer:
S1 = 1/2 g t^2 distance stone falls in time t
S2 = Vy t - 1/2 g t^2 distance thrown stone rises in time t
H = 49 = S1 + S2 = Vy t
t = 49 / 40 sec time when stones meet
Check:
Stone 1 falls: 1/2 g t^2 = 1/2 * 9.8 * (49 / 40)^2 = 7.35 m
Stone 2 rises : 40 * (49 / 40) - 1/2 * 9.8 (49 / 40)^2 = 41.65 m
Explanation:
(a)
The photoelectric effect is the phenomenon in which the light of the particular frequency incidents on the material. Then the emission of the electrons from the surface of the material occurs.
This phenomenon could not be explained by Newtonian physics.
In Newtonian physics, the energy is not discrete. In quantum mechanics, the energy is discrete. This is the main why the photoelectric effect could not be explained by Newtonian physics.
(b)
Light consists of photons. The photon is a packet of energy. It is also called quanta. The energies of the photons are quantized.
When a photon strikes on the surface of metal then the energy of photon is absorbed by an electron in the metal so that it may eject from the surface. This phenomenon is called the photoelectric effect.
(c)
In quantum mechanics, wave-particle duality concept is used to explain the wave-particle nature of the light. Light behaves as particle as well as wave. It shows both nature. The photoelectric phenomenon shows the particle nature of the light. It acts as a particle when it hits the surface of the metal.
In line spectra, the electron is excited to an energy level. In this case energy is transferred from photon to electron. There is a collision between photon and electron. The change in momentum will occur. It shows the particle nature of the light.