<h3>
Answer:</h3>
1.93 g
<h3>
Explanation:</h3>
<u>We are given;</u>
The chemical equation;
2C₂H₆(g) + 7O₂(g) → 4CO₂(g) + 6H₂O(l) ΔH = -3120 kJ
We are required to calculate the mass of ethane that would produce 100 kJ of heat.
- 2 moles of ethane burns to produce 3120 Kilo joules of heat
Number of moles that will produce 100 kJ will be;
= (2 × 100 kJ) ÷ 3120 kJ)
= 0.0641 moles
- But, molar mass of ethane is 30.07 g/mol
Therefore;
Mass of ethane = 0.0641 moles × 30.07 g/mol
= 1.927 g
= 1.93 g
Thus, the mass of ethane that would produce 100 kJ of heat is 1.93 g
Accelerating, because it’s going from standing still to running, so the speed increases
There is a very simple relationship between the three. First off, power is the amount of energy used over a certain amount of time. Energy is the capacity of carrying out that power. Lastly, time depends on how much energy you have to exert the work.
Hope this helps :)
<h2>Answer </h2>
Option C - 320J
<u>Explanation </u>
Since ethanol solid at −120 °C and is only cooling down (it won’t change states)
. The amount of Thermodynamic properties values c is given in form of solid, liquid and gas. Amount of energy released is calculated below.
Formula,
= change in temperature x specific heat capacity for solid ethanol x 40
=> 0.5 x 16x 40 = 320J
Therefore, the 320J of heat is released when 40.0g of ethanol cools.