Answer:
A pumpkin or a deer cus it's hunting season
Answer:
have the same number of atoms of each element in the reactants and in the products
Explanation:
<em>The basic principle in balancing a chemical equation would simply be to have the same number of atoms of each element in the reactants and in the products.</em>
<u>A balanced chemical equation is one that has the same number of atoms of each element on the reactant and the product's side of the equation.</u> For example, consider the equation below:

On the reactant's side, there are 2 atoms of H and O while there are 2 atoms of H and 1 atom of O on the product's side. This is an imbalanced equation. In order for it to be balanced, the number of atoms of H and O on the reactant side must be equal to the number of H and O on the product side as below.

Given the data from the question, the mass of arsenic that contains 1.23×10²⁰ atoms is 0.0153 g
<h3>Avogadro's hypothesis </h3>
6.02×10²³ atoms = 1 mole of arsenic
But
1 mole of arsenic = 75 g
Thus, we can say that:
6.02×10²³ atoms = 75 g of arsenic
<h3>How to determine the mass that contains 1.23×10²⁰ atoms</h3>
6.02×10²³ atoms = 75 g of arsenic
Therefore,
1.23×10²⁰ atoms = (1.23×10²⁰ × 75) / 6.02×10²³ atoms)
1.23×10²⁰ atoms = 0.0153 g of arsenic
Thus, 1.23×10²⁰ atoms is present in 0.0153 g of arsenic
Learn more about Avogadro's number:
brainly.com/question/26141731
Answer:
no, Charon is significantly smaller than Mercury
I think it is full because an atom is really small and can’t really be unreactive