1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lara31 [8.8K]
3 years ago
7

Select the correct answer.

Physics
1 answer:
aev [14]3 years ago
6 0

Two charged objects, A and B, exert an electric force on each other. If the distance between them is increased, then the electric forces on both objects decrease. <em>(C)</em>

That's why the experiment that a high school student is doing with charged objects in New York doesn't interfere with the experiment that a high school student is doing with charged objects in Los Angeles or Australia.

You might be interested in
A ball falling through the air has what?
AysviL [449]
A ball falling through the air has a mass, a density, a volume...it is facing air resistance and is being acted on by gravity...it is accelerating and gaining velocity...and it is increasing in kinetic energy.
I suppose out of all those the biggest thing the ball has in this case is ENERGY. There are two main types to focus on...

Kinetic Energy - The further the ball fall the more KE it has...until terminal velocity is reach, then KE would become constant. 
Potential Energy - Conversely to that of KE, the further the ball falls the less PE it will have. 

<em>Heat/Thermal Energy is technically also present due to the friction from the air resistance, but the transfer of energy between the air and ball is quite complex and not necessary important for basic physics.  
</em>
The question itself seem kind of vague and open ended, but I could just be viewing it the wrong way. 
Comment if you need more help! 
8 0
3 years ago
What is the magnitude of the magnetic dipole moment of the bar magnet
Annette [7]

The magnitude of the magnetic dipole moment of the bar magnet is 1.2 Am²

<h3> Magnetic dipole moment of the bar magnet</h3>

The magnitude of the magnetic dipole moment of the bar magnet at distance from its axis is calculated as follows;

B = \frac{2\mu_0m}{4\pi r^3} \\\\m = \frac{4\pi r^3 B}{2\mu_0}

where;

  • B is magnetic field
  • m is dipole moment
  • μ is permeability of free space

m = (4π x 0.1³ x 2.4 x 10⁻⁴)/(2 x 4π x 10⁻⁷)

m = 1.2 Am²

The complete question is below:

What is the magnitude of the magnetic dipole moment of the bar magnet from 0.1 m of its axis and magnetic field strength of 2.4 x 10⁻⁴ T.

Learn more about dipole moment here: brainly.com/question/27590192

#SPJ11

6 0
2 years ago
In an "atom smasher," two particles collide head on at relativistic speeds. If the velocity of the first particle is 0.741c to t
galina1969 [7]

Answer:

W_x = 0.9156\ c

Explanation:

given,

velocity of particle 1 = 0.741 c to left

velocity of second particle = 0.543 c to right

relative velocity between the particle = ?

for the relative velocity calculation we have formula

W_x = \dfrac{|u_x - v_x|}{1-\dfrac{u_xv_x}{c^2}}

u_x = 0.543 c

v_x = - 0.741 c

W_x = \dfrac{0.543 c - (-0.741 c)}{1-\dfrac{(0.543 c)(-0.741 c)}{c^2}}

W_x = \dfrac{0.543 c +0.741 c)}{1+\dfrac{(0.543)(0.741)c^2}{c^2}}

W_x = \dfrac{1.284c}{1+0.402363}

W_x = 0.9156\ c

Relative velocity of the particle is W_x = 0.9156\ c

5 0
3 years ago
A space vehicle approaches a space station in orbit. The intent of the engineers is to have the vehicle slowly approach, reducin
N76 [4]

Answer: The total momentum before the docking maneuver is mV_{1}+MV_{2} and after the docking maneuver is (m+M) U

Explanation:

Linear momentum p (generally just called momentum) is defined as mass in motion and is given by the following equation:  

p=m.v  

Where m is the mass of the object and v its velocity.

According to the conservation of momentum law:

<em>"If two objects or bodies are in a closed system and both collide, the total momentum of these two objects before the collision </em>p_{i} <em>will be the same as the total momentum of these same two objects after the collision </em>p_{f}<em>". </em>

<em />

p_{i}=p_{f}

This means, that although the momentum of each object may change after the collision, the total momentum of the system does not change.

Now, the docking of a space vehicle with the space station is an inelastic collision, which means both objects remain together after the collision.

Hence, the<u> initial momentum</u> is:

p_{i}=mV_{1}+MV_{2}

Where:

m is the mass of the vehicle

V_{1} is the velocity of th vehicle

M is the mass of the space station

V_{2} is the velocity of the space station

And the <u>final momentum</u> is:

p_{f}=(m+M)U

Where:

U is the velocity of the vehicle and space station docked

6 0
3 years ago
Read 2 more answers
Why is carbon added to iron
swat32

Answer:

it transforms it into high carbon alloy that is harder and can be sharper but is also more brittle in the process.

Explanation:

7 0
3 years ago
Other questions:
  • What are the tree types of thermal transfer
    11·2 answers
  • 11.
    7·1 answer
  • 1. A car with a mass of 1,500 kilograms is moving around a circular curve at a uniform velocity of 16 m/s. The curve has a radiu
    7·2 answers
  • Which of the following is the best definition of autoimmune disease?
    10·1 answer
  • What effect does El Nino have on Michigan's winters such as this winter (2017)?
    6·1 answer
  • A space rover weighs less on Mars than it does on Earth. Which statement explains this difference? A. The gravitational constant
    10·1 answer
  • During a home run, the batter only needs to run around all 4 bases if he wants to, since the ball cleared the outfield fence.
    6·1 answer
  • Doppler Effect: A stationary source produces a sound wave at a frequency of 50 Hz. The wave travels at 100 feet per second. A ca
    9·1 answer
  • The distibution on the condutor​
    11·1 answer
  • Why is it difficult to define abnormal behavior?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!