Answer:

Explanation:
Data provided as per the question below:-
Wavelength = 430.nm
The computation of the frequency of the light is shown below:-
Frequency = Velocity of light ÷ Wavelength
The Velocity of light = 
Wavelength = 430 nm =
m
Frequency = 


= 
Therefore for determining the frequency we simply applied the above formula.
A spring - also an electromagnet. Also know as a slinky!
Answer:
Limestone is easily eroded from above and below.
Explanation:
The Florida bedrock is largely made of limestone. Because limestone is a rock that is easily eroded, the landscape of a great part of Florida is classified as karstic.
Karstic landscapes are dotted by sinkholes, underground rivers, caves, and springs. The more acidic the groundwater or rainwater, the faster and more easily the limestone will succumb to erosion.
In this way, underground rivers, streams, runoff, rain, and underground water pooled in caves have all carved out gaps and caverns in the weak limestone bedrock.
By the second law of thermodynamics:
Heat can not spontaneously flow from cold regions to hot regions without external work being performed on a system.
Heat transfer is the passage of thermal energy from a hot ( t B = 80° C ) to a colder body ( t A = 40° C ).
Answer: B ) Heat flows from object B to object A.
The new temperature : 11.56 °C
<h3>Further explanation </h3>
Boyle's law and Gay Lussac's law

P1 = initial gas pressure (N/m² or Pa)
V1 = initial gas volume (m³)
P2 = final gas pressure
V2 = final gas volume
T1 = initial gas temperature (K)
T2 = final gas temperature
V₁=4.39 L
T₁=44+273=317 K
P₁ = 729 torr = 0,959211 atm
V₂=3.78 L
P₂= 1 atm
