1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zalisa [80]
3 years ago
9

Oil with a density of 850 kg/m3 and kinematic viscosity of 0.00062 m2/s is being discharged by an 8-mm-diameter, 42-m-long horiz

ontal pipe from a storage tank open to the atmosphere. The height of the liquid level above the center of the pipe is 4 m. Disregarding the minor losses, determine the flow rate of oil through the pipe. Solve this problem by making the assumption that since the velocity through the pipe is so small, the pressure at the pipe entrance is nearly the same as the hydrostatic pressure at that location.
Engineering
1 answer:
sladkih [1.3K]3 years ago
8 0

Answer:

The flow rate of oil through the pipe is 1.513E-7 m³/s.

Explanation:

Given

Density, ρ = 850 kg/m³

Kinematic viscosity, v = 0.00062 m²/s

Diameter, d = 8-mm = 0.008m

Length of horizontal pipe, L = 42-m

Height, h = 4-m.

We'll solve the flow rate of oil through the pipe by using Hagen-Poiseuille equation.

This is given as

∆P = (128μLQ)/πD⁴

Where ∆P = Rate of change of pressure

μ = Dynamic Viscosity

Q = Flow rate of oil through the pipe.

First, we need to determine the dynamic viscosity and the rate of change in pressure

Dynamic Viscosity, μ = Density (ρ) * Kinematic viscosity (v)

μ = 850 kg/m³ * 0.00062 m²/s

μ = 0.527kg/ms

Then, we calculate the rate of change of pressure.

Assuming that the velocity through the pipe is so small;

∆P = Pressure at the bottom of the tank

∆P = Density (ρ) * Acceleration of gravity (g) * Height (h)

Taking g = 9.8m/s²

∆P = 850kg/m³ x 9.8m/s² x 4m

∆P = 33320N/m²

Recall that Hagen-Poiseuille equation.

∆P = (128μLQ)/πD⁴ --- Make Q the subject of formula

Q = (πD⁴P)/(128μL)

By substituton;

Q = (π * 0.008⁴ * 33320)/(128 * 0.527 * 42)

Q = 0.00000015133693643099

Q = 1.513E-7 m³/s.

Hence, the flow rate of oil through the pipe is 1.513E-7 m³/s.

You might be interested in
What is the different between isometric view and isometric projection
yanalaym [24]

Answer:

All the dimensions in the isometric drawing are actual while when in the Isometric projection due to this it has to be the isometric scale is to be used.

7 0
2 years ago
System grounding on a power system means electrically connecting the __?__ of every wye-connected transformer or generator to ea
irinina [24]

Answer: Neutrals

Explanation: System grounding on a power system is a term used to describe the entire processes involved when a neutral is used as the conductor to connect to the solid earth. This ensures that power is generated. This is usually done using either an inductor, an impendance or a resistor. It is very important and necessary to carry out a proper grounding of a power system in order to ensure the safety of the equipment and the personnel etc

6 0
3 years ago
Choose the three questions that an engineer should ask himself or herself when identifying the need of a problem.
boyakko [2]

Answer:

What is the goal? What will a successful solution look like? What is it that the client expects me to accomplish?

Explanation:

5 0
3 years ago
Read 2 more answers
If you add 10 J of heat to a system so that the final temperature of the system is 200K, what is the change in entropy of the sy
Elden [556K]

Answer:

0.05 J/K

Explanation:

Given data in question

heat (Q) = 10 J

temperature (T) = 200 K

to find out

the change in entropy of the system

Solution

we will solve this by the entropy change equation

i.e  ΔS = ΔQ/T           ...................1

put the value of heat Q and Temperature T in equation 1

ΔS is the enthalpy change and T is the temperature

so  ΔS = 10/200

ΔS = 0.05 J/K

8 0
3 years ago
This question allows you to practice proving a language is non-regular via the Pumping Lemma. Using the Pumping Lemma (Theorem 1
Ulleksa [173]

Answer:

<em>L is not a regular language with formal proofs  </em>

Explanation:

<em>(a) To prove that L is not a regular language, we will use a proof by contradiction. the assumption entails  that L is a regular language. Then by the Pumping Lemma for Regular Languages, </em>

<em>there exists a pumping length p for L such that for any string s ∈ L where |s| ≥ p, </em>

<em>s = xyz subject to the following conditions: </em>

<em>(a) |y| > 0 </em>

<em>(b) |xy| ≤ p, and </em>

<em>(c) ∀i > 0, xyi </em>

<em>z ∈ L</em>

<em />

<em>(b) To determine that L is not a regular language, we mke use of proof by contradiction.  lets assume, that L is regular. Then by the Pumping Lemma for Regular Languages, it states also,</em>

<em>The pumping length, p for L such that for any string s ∈ L where |s| ≥ p, s = xyz subject  to the condtions as follows : </em>

<em>(a) |y| > 0 </em>

<em>(b) |xy| ≤ p, and </em>

<em>(c) ∀i > 0, xyi </em>

<em>z ∈ L. </em>

<em>Choose s = 0p10p </em>

<em>. Clearly, |s| ≥ p and s ∈ L. By condition (b) above, it follows is shown. by the first condition x and y are zeros.</em>

<em>for some  k > 0. Per (c), we can take i = 0 and the resulting string will still be in L. Thus,  xy0 </em>

<em>z should be in L. xy0 </em>

<em>z = xz = 0(p−k)10p </em>

<em>It is shown that is is  not in L. This is a  contraption with the pumping lemma.  our assumption that L is regular is  incorrect, and L is not a regular language</em>

6 0
3 years ago
Other questions:
  • What is measurement in term of electrical engineering ​
    5·1 answer
  • Liquid water enters an adiabatic piping system at 15°C at a rate of 8kg/s. If the water temperature rises by 0.2°C during flow d
    12·1 answer
  • A cooking pan whose inner diameter is 20 cm is filled with water and covered with a 4-kg lid. If the local atmospheric pressure
    9·2 answers
  • On a hot summer day, a student turns his fan on when he leaves his room in the morning. When he returns in the evening, will the
    5·1 answer
  • An inventor claims to have developed a power cycle operating between hot and cold reservoirs at 1175 K and 295 K, respectively,
    9·1 answer
  • Which is an alloy made up of iron and carbon and has high compressive and tensile strength?
    6·1 answer
  • What is the difference between a natural and artificial diamond ​
    6·2 answers
  • What is photosynthesis​
    9·2 answers
  • 3. If nothing can ever be at absolute zero, why does the concept exist?
    10·1 answer
  • Which level of acceleration should you use when accelerating on a short highway entry ramp?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!