The complete question was calculate the period T assuming the smallest amplitude.
Using the equation;
T = 2 π√(L/g)
Where T is the period in seconds, L is the length of the rod or wire in meters and g is the acceleration due to gravity.
Hence; T = 2×3.14 × √(2/9.81)
= 6.28 × 0.4515
= 2.836 seconds
Answer:
Speed=28.1m/s(to 3s.f.) , Time=2.19s(to 3s.f.)
Explanation:
Time=Distance/Speed
=14.5/6.63
=2.19s(to 3s.f.)
Acceleration=Final Velocity(v)-Initial Velocity(u)/Time
9.81=v-6.63/2.19
v-6.63=21.5
v=28.1m/s
Answer: M = 6.13 × 10^18 kg
Explanation:
g = GM/r2,
Where
The mass M of the asteroid = ?
The radius r = 110000 m
g = 0.0338 m/s^2
G is the gravitational constant.
SI units its value is approximately 6.674×10^−11m3⋅kg−1⋅s−2
Using the formula
g = GM/r2
Cross multiply
GM = gr^2
6.674×10^-11M = 0.0338 × 110000^2
M = 408×10^6/6.674×10^-11
M = 6.13 × 10^18 kg
Gravity is pulling the book towards the center of the earth, and the rebounding effect of the table cancelling out gravity allowing for the book to sit at rest.