1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Eva8 [605]
3 years ago
5

The mass flow rate in a 4.0-m wide, 2.0-m deep channel is 4000 kg/s of water. If the velocity distribution in the channel is lin

ear with depth what is the surface velocity of flow in the channel?
Engineering
1 answer:
IceJOKER [234]3 years ago
4 0

Answer:

V = 0.5 m/s

Explanation:

given data:

width of channel =  4 m

depth of channel = 2 m

mass flow rate = 4000 kg/s = 4 m3/s

we know that mass flow rate is given as

\dot{m}=\rho AV

Putting all the value to get the velocity of the flow

\frac{\dot{m}}{\rho A} = V

V = \frac{4000}{1000*4*2}

V = 0.5 m/s

You might be interested in
You have been assigned to design an open cylindrical storage tank 4 meters tall with a diameter of 8 meters to be made out of A-
Katen [24]

Answer:

The required wall thickness is 1.506 \times 10^{-3} m

Explanation:

Given:

Fluid density \rho = 1200 \frac{kg}{m^{3} }

Diameter of tank d = 8 m

Length of tank l = 4 m

F.S = 4

For A-36 steel yield stress \sigma = 250 MPa,

Allowable stress \sigma _{allow} = \frac{\sigma}{F.S}

 \sigma _{allow} = \frac{250}{4} = 62.5 MPa

Pressure force is given by,

 P = \rho gh

 P = 1200 \times 9.8 \times 4

P = 47088 Pa

Now for a vertical pipe,

\sigma _{allow} = \frac{Pd}{4t}

Where t = required thickness

 t = \frac{Pd}{4 \sigma _{allow} }

 t = \frac{47088 \times 8 }{4 \times 62.5 \times 10^{6} }

t = 1.506 \times 10^{-3} m

Therefore, the required wall thickness is 1.506 \times 10^{-3} m

8 0
3 years ago
Which statements describe the motion of car A and car B? Check all that apply. Car A and car B are both moving toward the origin
vekshin1

Answer:

car a is moving faster than the car b

8 0
3 years ago
Water at atmospheric pressure boils on the surface of a large horizontal copper tube. The heat flux is 90% of the critical value
masya89 [10]

Answer:

The tube surface temperature immediately after installation is 120.4°C and after prolonged service is 110.8°C

Explanation:

The properties of water at 100°C and 1 atm are:

pL = 957.9 kg/m³

pV = 0.596 kg/m³

ΔHL = 2257 kJ/kg

CpL = 4.217 kJ/kg K

uL = 279x10⁻⁶Ns/m²

KL = 0.68 W/m K

σ = 58.9x10³N/m

When the water boils on the surface its heat flux is:

q=0.149h_{fg} \rho _{v} (\frac{\sigma (\rho _{L}-\rho _{v})}{\rho _{v}^{2} }  )^{1/4} =0.149*2257*0.596*(\frac{58.9x10^{-3}*(957.9-0.596) }{0.596^{2} } )^{1/4} =18703.42W/m^{2}

For copper-water, the properties are:

Cfg = 0.0128

The heat flux is:

qn = 0.9 * 18703.42 = 16833.078 W/m²

q_{n} =uK(\frac{g(\rho_{L}-\rho _{v})     }{\sigma })^{1/2} (\frac{c_{pL}*deltaT }{c_{fg}h_{fg}Pr  } \\16833.078=279x10^{-6} *2257x10^{3} (\frac{9.8*(957.9-0.596)}{0.596} )^{1/2} *(\frac{4.127x10^{3}*delta-T }{0.0128*2257x10^{3}*1.76 } )^{3} \\delta-T=20.4

The tube surface temperature immediately after installation is:

Tinst = 100 + 20.4 = 120.4°C

For rough surfaces, Cfg = 0.0068. Using the same equation:

ΔT = 10.8°C

The tube surface temperature after prolonged service is:

Tprolo = 100 + 10.8 = 110.8°C

8 0
3 years ago
HOW TO CALCULATE MARGINAL RATE
Basile [38]

Answer:

Divide the difference in tax by the amount of income from the investment, and you'll get the economic marginal tax rate from investing. Most people refer to marginal tax rates as being identical to tax brackets.

hope this helps

have a good day :)

Explanation:

8 0
2 years ago
Consider a resistor made of pure silicon with a cross-sectional area pf 0.5 μm2, and a length of 50 μm. What is the resistance o
lukranit [14]

Answer: 24 pA

Explanation:

As pure silicon is a semiconductor, the resistivity value is strongly dependent of temperature, as the main responsible for conductivity, the number of charge carriers (both electrons and holes) does.

Based on these considerations, we found that at room temperature, pure silicon resistivity can be approximated as 2.1. 10⁵  Ω  cm.

The resistance R of a given resistor, is expressed by the following formula:

R = ρ L / A

Replacing by the values for resistivity, L and A, we have

R = 2.1. 10⁵ Ω  cm. (10⁴ μm/cm). 50 μm/ 0.5 μm2

R = 2.1. 10¹¹ Ω

Assuming that we can apply Ohm´s Law, the current that would pass through this resistor for an applied voltage of 5 V, is as follows:

I = V/R = 5 V / 2.1.10¹¹ Ω = 2.38. 10⁻¹¹ A= 24 pA

7 0
3 years ago
Other questions:
  • a) Give a brief description of the type of DC motor that operates with its field windings running in Series with the armature an
    10·1 answer
  • Matthew wants to manufacture a large quantity of products with standardized products having less variety. Which type of producti
    5·1 answer
  • Place these events in chronological order. Put the numbers 1-6 next to the<br> events.
    15·1 answer
  • Explain why veracity, value, and visualization can also be said to apply to relational databases as well as Big Data.
    6·1 answer
  • Write a program to calculate overtime pay of 10 employees. Overtime is paid at the rate of Rs. 12.00
    13·1 answer
  • Select the correct answer. The most frequent maintenance task for a car is: A. Oil changes B. Tire replacements C. Coolant chang
    10·2 answers
  • What information in drawing's title block identifies the project?
    12·1 answer
  • What is the relationship between compressor work and COPR?
    14·1 answer
  • "Transformer is used to change the voltage".
    5·1 answer
  • Lets Try This: study the pictures. Describe what you see and think about it. write your answer on a sheet of paper. home room
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!