KE = 1/2 * m * v^2
KE = 1/2 * 130 * 23^2
KE = 34385J
Answer:
this answer is hard cant answer
The total pressure of the mixture of gases is equal to the sum of the pressure of each gas as if it is alone in the container. The partial pressure of a component of the mixture is said to be equal to the product of the total pressure and the mole fraction of the component in the mixture.
Partial pressure of hydrogen gas = 1.24 atm x .25 = 0.31 atm
Partial pressure of the remaining = 1.24 atm x (1-.25) = 0.93 atm
Answer:

Explanation:
NaOH + HNO₃ ⟶ NaNO₃ + H₂O
There are two energy flows in this reaction.

Data:
V(base) = 100.0 mL; c(base) = 0.300 mol·L⁻¹
V(acid) = 100.0 mL; c (acid) = 0.300 mol·L⁻¹
T₁ = 35.00 °C; T₂ = 37.00 °C
Calculations:
(a) q₁

We have equimolar amounts of NaOH and HNO₃
n = 0.0300 mol
q₁ = 0.0300ΔH
(b) q₂
V = 100.0 mL + 100.0 mL = 200.0 mL
m = 200.0 g
ΔT = T₂ - T₁ = 37.00 °C – 35.00 °C = 2.00 °C
q₂ = 200.0 × 4.184 × 2.00 = 1674 J
(c) ΔH
0.0300ΔH + 1674 = 0
0.0300ΔH = -1674
ΔH = -1674/0.0300
ΔH = -55 800 J/mol
ΔH = -55.8 kJ/mol

The percent composition of NaOH, also known as sodium hydroxide, is 57.48 percent sodium, 40 percent oxygen, and 2.52 percent hydrogen.