Answer:
a) 926 μJ
b) 3.802 mC
c) 8.61 A
d) 0.0721
e) 3.2137
Explanation:
The energy in the inductor is


The energy store in a capacitor is

The voltage in a capacitor is
V = Q/C

Therefore:

The total energy is Et = 925.6 + 1.1 = 926.7 μJ
At a certain point all the energy of the circuit will be in the capacitor, at this point it will have maximum charge

V = Q/C





When the capacitor is completely empty all the energy will be in the inductor and current will be maximum




At t = 0 the capacitor has a charge of 3.8 mC, the maximum charge is 3.81 mC
q = Q * cos(vt + f)
q(0) = Q * cos(v*0 + f)
3.8 = 3.81 * cos(f)
cos(f) = 3.8/3.81
f = arccos(3.8/3.81) = 0.0721
If the capacitor is discharging it is a half cycle away, so f' = f + π = 3.2137
Answer:
p = 2*10^(-7) ohm m
Explanation:
The resistivity and Resistance relationship is:

For lowest resistivity with R < 100 ohms.
We need to consider the possibility of current flowing across minimum Area and maximum Length.
So,
Amin = 2nm x 10 nm = 2 * 10^(-16) m^2
Lmax = 100nm
Using above relationship compute resistivity p:

Answer: p = 2*10^(-7) ohm m
I think it’s A
Hope I helped
Answer:

Explanation:
Previous concepts
Angular momentum. If we consider a particle of mass m, with velocity v, moving under the influence of a force F. The angular momentum about point O is defined as the “moment” of the particle’s linear momentum, L, about O. And the correct formula is:

Applying Newton’s second law to the right hand side of the above equation, we have that r ×ma = r ×F =
MO, where MO is the moment of the force F about point O. The equation expressing the rate of change of angular momentum is this one:
MO = H˙ O
Principle of Angular Impulse and Momentum
The equation MO = H˙ O gives us the instantaneous relation between the moment and the time rate of change of angular momentum. Imagine now that the force considered acts on a particle between time t1 and time t2. The equation MO = H˙ O can then be integrated in time to obtain this:

Solution to the problem
For this case we can use the principle of angular impulse and momentum that states "The mass moment of inertia of a gear about its mass center is
".
If we analyze the staritning point we see that the initial velocity can be founded like this:

And if we look the figure attached we can use the point A as a reference to calculate the angular impulse and momentum equation, like this:

](https://tex.z-dn.net/?f=0%2B%5Csum%20%5Cint_%7B0%7D%5E%7B4%7D%2020t%20%280.15m%29%20dt%20%3D0.46875%20%5Comega%20%2B%2030kg%5B%5Comega%280.15m%29%5D%280.15m%29)
And if we integrate the left part and we simplify the right part we have

And if we solve for
we got:
