Answer:
4.8°C
Explanation:
The rate of heat transfer through the wall is given by:


Assumptions:
1) the system is at equilibrium
2) the heat transfer from foam side to interface and interface to block side is equal. There is no heat retention at any point
3) the external surface of the wall (concrete block side) is large enough that all heat is dissipated and there is no increase in temperature of the air on that side






temperature at the interface
Solving for
will give the temperature at the interface:





Answer:
6.37 inch
Explanation:
Thinking process:
We need to know the flow rate of the fluid through the cross sectional pipe. Let this rate be denoted by Q.
To determine the pressure drop in the pipe:
Using the Bernoulli equation for mass conservation:

thus

The largest pressure drop (P1-P2) will occur with the largest f, which occurs with the smallest Reynolds number, Re or the largest V.
Since the viscosity of the water increases with temperature decrease, we consider coldest case at T = 50⁰F
from the tables
Re= 2.01 × 10⁵
Hence, f = 0.018
Therefore, pressure drop, (P1-P2)/p = 2.70 ft
This occurs at ae presure change of 1.17 psi
Correlating with the chart, we find that the diameter will be D= 0.513
= <u>6.37 in Ans</u>
Answer:neville chamberlain died
Explanation:
Answer:
Explanation:
ADT for an 2-D array:
struct array{
int arr[10];
}arrmain[10];
An application that stores an array with 1000 rows and 1000 columns, where less than 10,000 of the array values are non-zero. The two different implementations for such arrays that would be more space efficient than a standard two-dimensional array implementation requiring one million positions are :
1) struct array{
int *p;
}arr[1000];
2) struct array{
int *p;
}arr[1000];
Answer:
The answer for the question is true
Explanation:
If you get a virus or get hacked you will still have it saved