Answer: The total vehicle delay is
39sec/veh
Explanation: we shall define only the values that are important to this question, so that the solution will be very clear for your understanding.
Effective red time (r) = 25sec
Arrival rate (A) = 900veh/h = 0.25veh/sec
Departure rate (D) = 1800veh/h = 0.5veh/sec
STEP1: FIND THE TRAFFIC INTENSITY (p)
p = A ÷ D
p = 0.25 ÷ 0.5 = 0.5
STEP 2: FIND THE TOTAL VEHICLE DELAY AFTER ONE CYCLE
The total vehicle delay is how long it will take a vehicle to wait on the queue, before passing.
Dt = (A × r^2) ÷ 2(1 - p)
Dt = (0.25 × 25^2) ÷ 2(1 - 0.5)
Dt = 156.25 ÷ 4 = 39.0625
Therefore the total vehicle delay after one cycle is;
Dt = 39
Answer:
The answer is "Option A".
Explanation:
Series:

Solving the above series:

So, the series is: 
Answer:
Explanation:
Given
Temperature of solid 
Einstein Temperature 
Heat Capacity in the Einstein model is given by
![C_v=3R\left [ \frac{T_E}{T}\right ]^2\frac{e^{\frac{T_E}{T}}}{\left ( e^{\frac{T_E}{T}}-1\right )^2}](https://tex.z-dn.net/?f=C_v%3D3R%5Cleft%20%5B%20%5Cfrac%7BT_E%7D%7BT%7D%5Cright%20%5D%5E2%5Cfrac%7Be%5E%7B%5Cfrac%7BT_E%7D%7BT%7D%7D%7D%7B%5Cleft%20%28%20e%5E%7B%5Cfrac%7BT_E%7D%7BT%7D%7D-1%5Cright%20%29%5E2%7D)

Substitute the values


Answer:
<h2>Generator </h2>
Explanation:
A generator converts mechanical energy into electrical energy