I don't know what your answers were but the more "stuff" there is the more energy it takes to freeze or boil it. Hope this could help
<u>Answer:</u> The new pressure for oxygen gas is 6 atm.
<u>Explanation:</u>
To calculate the new pressure of the gas, we use the equation given by Boyle's Law.
This law states that the pressure is inversely proportional to the volume of the gas at constant temperature and number of moles.
Mathematically,

or,

where,
are the initial pressure and volume of the gas.
are the final pressure and volume of the gas.
We are given:

Putting values in above equation, we get:

Hence, the new pressure for oxygen gas is 6 atm.
Answer:
functional group - carboxylic
molecule name- propanic acid
Answer:
1.D
2.C
3.D
4.D
5.C
6 B
those are the answers, we must take care of our environment
Answer:
A. It is the ratio of the concentrations of products to the concentrations of reactants.
Explanation:
The equilibrium constant of a chemical reaction is the ratio of the concentration of products to the concentration of reactants.
This equilibrium constant can be expressed in many different formats.
- For any system, the molar concentration of all the species on the right side are related to the molar concentrations of those on the left side by the equilibrium constant.
- The equilibrium constant is a constant at a given temperature and it is temperature dependent.
- The derivation of the equilibrium constant is based on the law of mass action.
- It states that "the rate of a chemical reaction is proportional to the product of the concentration of the reacting substances. "