Answer is: there is 2,69·10²³ atoms of bromine.
m(CH₂Br₂) = 39,0 g.
n(CH₂Br₂) = m(CH₂Br₂) ÷ M(CH₂Br₂).
n(CH₂Br₂) = 39 g ÷ 173,83 g/mol.
n(CH₂Br₂) = 0,224 mol.
In one molecule of CH₂Br₂, there is two bromine atoms, so:
n(CH₂Br₂) : n(Br) = 1 : 2.
n(Br) = 0,448 mol.
N(Br) = n(Br) · Na.
N(Br) = 0,448 mol · 6,022·10²³ 1/mol.
n(Br) = 2,69·10²³.
Answer:
The value of the heat capacity of the Calorimeter
= 54.4 
Explanation:
Given data
Heat added Q = 4.168 KJ = 4168 J
Mass of water
= 75.40 gm
Temperature change = ΔT = 35.82 - 24.58 = 11.24 ° c
From the given condition
Q =
ΔT +
ΔT
Put all the values in above equation we get
4168 = 75.70 × 4.18 × 11.24 +
× 11.24
611.37 =
× 11.24
= 54.4 
This is the value of the heat capacity of the Calorimeter.
Answer:
Liquid - Gas is Evaporation & Gas - Cooling is condensation
Explanation:
Gabriel Fahrenheit invented the thermometer
First, you mix the salt and sand with water, so the salt dissolves. Next, you filter the sand out, so you have the slat water and sand separated. Then, you evaporate the water, leaving the salt behind.