1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Oduvanchick [21]
2 years ago
12

A current of 4.00 mA flows through a copper wire. The wire has an initial diameter of 4.00 mm which gradually tapers to a diamet

er of 1.00 mm. The wire length is
2.00 m and copper has a number density of 8.50 × 1028 m–3.

Find the change in mean drift velocity for electrons as they pass from one end of the wire to the other and therefore calculate the average acceleration of the electrons.
Physics
1 answer:
lesya692 [45]2 years ago
7 0

The change in mean drift velocity for electrons as they pass from one end of the wire to the other is 3.506 x 10⁻⁷ m/s and average acceleration of the electrons is 4.38 x 10⁻¹⁵ m/s².

The given parameters;

  • <em>Current flowing in the wire, I = 4.00 mA</em>
  • <em>Initial diameter of the wire, d₁ = 4 mm = 0.004 m</em>
  • <em>Final diameter of the wire, d₂ = 1 mm = 0.001 m</em>
  • <em>Length of wire, L = 2.00 m</em>
  • <em>Density of electron in the copper, n = 8.5 x 10²⁸ /m³</em>

<em />

The initial area of the copper wire;

A_1 = \frac{\pi d^2}{4} = \frac{\pi \times (0.004)^2}{4} =1.257\times 10^{-5} \ m^2

The final area of the copper wire;

A_2 = \frac{\pi d^2}{4} = \frac{\pi (0.001)^2}{4} = 7.86\times 10^{-7} \ m^2

The initial drift velocity of the electrons is calculated as;

v_d_1 = \frac{I}{nqA_1} \\\\v_d_1 = \frac{4\times 10^{-3} }{8.5\times 10^{28} \times 1.6\times 10^{-19} \times 1.257\times 10^{-5}} \\\\v_d_1 = 2.34 \times 10^{-8} \ m/s

The final drift velocity of the electrons is calculated as;

v_d_2 = \frac{I}{nqA_2} \\\\v_d_2 = \frac{4\times 10^{-3} }{8.5\times 10^{28} \times 1.6\times 10^{-19} \times 7.86\times 10^{-7}} \\\\v_d_2 = 3.74\times 10^{-7}  \ m/s

The change in the mean drift velocity is calculated as;

\Delta v = v_d_2 -v_d_1\\\\\Delta v = 3.74\times 10^{-7} \ m/s \ -\ 2.34 \times 10^{-8} \ m/s = 3.506\times 10^{-7} \ m/s

The time of motion of electrons for the initial wire diameter is calculated as;

t_1 = \frac{L}{v_d_1} \\\\t_1 = \frac{2}{2.34\times 10^{-8}} \\\\t_1 = 8.547\times 10^{7} \ s

The time of motion of electrons for the final wire diameter is calculated as;

t_2 = \frac{L}{v_d_1} \\\\t_2= \frac{2}{3.74 \times 10^{-7}} \\\\t_2 = 5.348 \times 10^{6} \ s

The average acceleration of the electrons is calculated as;

a = \frac{\Delta v}{\Delta t} \\\\a = \frac{3.506 \times 10^{-7} }{(8.547\times 10^7)- (5.348\times 10^6)} \\\\a = 4.38\times 10^{-15} \ m/s^2

Thus, the change in mean drift velocity for electrons as they pass from one end of the wire to the other is 3.506 x 10⁻⁷ m/s and average acceleration of the electrons is 4.38 x 10⁻¹⁵ m/s².

Learn more here: brainly.com/question/22406248

You might be interested in
An iron bar has more mass than a plastic bar of the same volume. so the iron bar will have greater inertia.
Irina-Kira [14]

The response is False, both bars, iron bars and plastic bars have de same inertia, this characteristic does not depend on the type of material, the inertia depends on his transverse section, since we can estimate in the following formula

<span>Area moment of inertia Ixx = BH3/12</span>

<span>Area moment of inertia Iyy= HB3/12</span>

6 0
3 years ago
Read 2 more answers
What is the mass of 5 moles of gold
Serhud [2]
First of all, we know that one mole is equal to the atomic number of an element.

The atomic number of gold is <span>197.0g Au

And we need to find 5 moles.

5 * 197.0 g Au = </span><span>985.0g

Grams is used to measure mass. 

Answer: </span>985.0g
8 0
3 years ago
Read 2 more answers
If the atoms of one object (initially neutral) have electrons rubbed off through friction with a second object, the first object
snow_lady [41]
Positive. The 1st object loses electrons and will thus have an imbalance of charge with loss of electrons.
4 0
3 years ago
An inelastic collision of two objects is characterized by the following.
serious [3.7K]

Options:

(a) Total kinetic energy of the system remains constant.

(b) Total momentum of the system is conserved.

(c) Both A and B are true.

(d) Neither A nor B are true.

Answer:

(b) Total momentum of the system is conserved.

Explanation:

An inelastic collision is a type of collision in which momentum is conserved and kinetic energy is not conserved. That is, there is loss of kinetic energy.

In an inelastic collision:

Total momentum before collision = Total momentum after collision

An example of inelastic collision is seen in the ballistic pendulum, The ballistic pendulum is a device in which a projectile such as a bullet is fired into a suspended heavy wooden stationary block.

8 0
3 years ago
Its biggest fault is the lack of carefully controlled and thoughtfully interpreted experiments.
Jobisdone [24]

Pseudoscience

Pseudoscience is made of up statements, beliefs or practices that claim to be scientific and factual but are not based in the scientific method.

5 0
3 years ago
Other questions:
  • A 59kg child starting from rest slides down a water slide with a vertical height of 5.0m. what is the child's speed halfway down
    15·1 answer
  • Calculate how much an astronaut with mass of 90 kg would weigh while standing on the surface of Mars. The acceleration due to gr
    9·1 answer
  • Find the work needed to lift a 20-N book 2 m.
    15·1 answer
  • A microscope has an objective lens with a focal length of 14.0mm . A small object is placed 0.80mm beyond the focal point of the
    5·1 answer
  • while driving his sports car at 20.0 m/s down a four lane highway, eddie comes up behind a slow moving dump truck and decides to
    12·1 answer
  • Force that opposes motion between two surfaces
    14·1 answer
  • It would be impossible to build a microscope that could use visible light to see the molecular structure of a crystal because. I
    5·1 answer
  • A 100 Kg man is diving off a 50 meter cliff. What is his kinetic energy when he is 20 meters from the water?
    12·1 answer
  • At a certain time a particle had a speed of 80 m/s in the positive x direction, and 9.8 s later its speed was 20 m/s in the oppo
    11·1 answer
  • The equivalent resistance of a series combination of resistors is always greater than any individual resistance
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!