Answer:
τ = (7.96 x 10⁴ m⁻³)T
This is the expression for maximum allowable shear stress in terms of the maximum torque applied in Nm.
Explanation:
The maximum allowable shear stress on the solid shaft can be given by the torsional formula as follows:
τ = Tc/J
where,
τ = Maximum Allowable Shear Stress = ?
T = Maximum Torque Applied to the Shaft
c = maximum distance from center to edge = radius in this case = 20 mm = 0.02 m
J = Polar Moment of inertia = πr⁴/2 = π(0.02 m)⁴/2 = 2.51 x 10⁻⁷ m⁴
Therefore,
τ = T(0.02 m)/(2.51 x 10⁻⁷ m⁴)
<u>τ = (7.96 x 10⁴ m⁻³)T</u>
<u>This is the expression for maximum allowable shear stress in terms of the maximum torque applied in Nm.</u>
Hi there!

Use the following kinematic equation to solve:
vf² = vi² + 2(ad)
Since the initial velocity is 0 m/s because it started at rest, we can eliminate this part of the equation:
vf² = 2ad
Plug in the given acceleration and distance:
vf² = 2(9.8)(16)
vf ≈ 17.7. The correct answer is C.
The planetary temperature energy balance is obtained by radiating back the absorbed radiation energy from outer-space, by the planet and thus acquiring thermal equilibrium.
What is the process of attaining thermal equilibrium by Earth?
The Stefan-Boltzmann law states that the more the temperature a planet has, the more it will radiate out to reach thermal equilibrium.
We know that outer space contains large masses of radiative energy freely distributed in its vast expanse. A small fraction of this energy is absorbed by the Earth through the atmosphere, surface land, clouds etc.
Now, radiative balance is achieved when a planet's surface continuously warms up until it reaches its peak at which point the same amount of absorbed energy can then be radiated back to space. The relative amount of energy radiated back by a planet is dependent upon the size of the planet.
A colder planet relatively absorbs lower amount of radiation energy from space. In some time, as the planet heats up enough, the energy is radiated back to the space attaining thermal equilibrium.
Learn more about Stefan-Boltzmann law here:
<u>brainly.com/question/14919749</u>
#SPJ4
Answer: I put the importance of the lab in the topic is to find how dense an object is and if it can sink or float and it's important to answer the question so you can also find mass and volume.
Explanation: I dunno haha...