1.) equal volume of different substances have "different" masses.
2.)The more closely packed arrangement the particles of a substance have, "increases" its density.
3.)the SI unit of power is "Watts".
4.)an iron nail sinks in water but floats on " mercury ".
5.)balloons used for advertisements are filled with " helium" gas.
6.)"Conduction" is the primary mode of heat transfer in liquid and gases.
I hope this helps you...
Answer:
The maximum energy that can be stored in the capacitor is 6.62 x 10⁻⁵ J
Explanation:
Given that,
dielectric constant k = 5.5
the area of each plate, A = 0.034 m²
separating distance, d = 2.0 mm = 2 x 10⁻³ m
magnitude of the electric field = 200 kN/C
Capacitance of the capacitor is calculated as follows;

Maximum potential difference:
V = E x d
V = 200000 x 2 x 10⁻³ = 400 V
Maximum energy that can be stored in the capacitor:
E = ¹/₂CV²
E = ¹/₂ x 8.275 x 10⁻¹⁰ x (400)²
E = 6.62 x 10⁻⁵ J
Therefore, the maximum energy that can be stored in the capacitor is 6.62 x 10⁻⁵ J
Answer:
h = 13.06 m
Explanation:
Given:
- Specific gravity of gasoline S.G = 0.739
- Density of water p_w = 997 kg/m^3
- The atmosphere pressure P_o = 101.325 KPa
- The change in height of the liquid is h m
Find:
How high would the level be in a gasoline barometer at normal atmospheric pressure?
Solution:
- When we consider a barometer setup. We dip the open mouth of an inverted test tube into a pool of fluid. Due to the pressure acting on the free surface of the pool, the fluid starts to rise into the test-tube to a height h.
- The relation with the pressure acting on the free surface and the height to which the fluid travels depends on the density of the fluid and gravitational acceleration as follows:
P = S.G*p_w*g*h
Where, h = P / S.G*p_w*g
- Input the values given:
h = 101.325 KPa / 0.739*9.81*997
h = 13.06 m
- Hence, the gasoline will rise up to the height of 13.06 m under normal atmospheric conditions at sea level.
1.) appearance
2.)texture
3.)color
4.)melting point
5.)odor