Hello! I can help you with this!
4. For this problem, we have to write and solve a proportion. We would set this proportion up as 12/15 = 8/x. This is because we're looking for the length of the shadow and we know the height of the items, so we line them up horizontally and x goes with 8, because we're looking for the shadow length. Let's cross multiply the values. 15 * 8 = 120. 12 * x = 12. You get 120 = 12x. Now, we must divide each side by 12 to isolate the "x". 120/12 is 10. x = 10. There. The cardboard box casts a shadow that is 10 ft long.
5. For this question, you do the same thing. This time, you're finding the height of the tower, so you would do 1.2/0.6 = x/7. Cross multiply the values in order to get 8.4 = 0.6x. Now, divide each side by 0.6x to isolate the "x". 8.4/0.6 is 14. x = 14. There. The tower is 14 m tall.
If you need more help on proportions and using proportions in real life situations, feel free to search on the internet to find more information about how you solve them.
Well if you didn't you could make mistakes, which would lead ,in the best case, at a fail of the circuit , or if it goes out of control it could be dangerous
for example you have to know that the wires become hot and they loose their abbilitys as connecters(the hotter it will, the more energy you lose becouse the R will be bigger)
Answer:
The weather will clear up and get sunnier.
Explanation:As weather forecasters monitor air pressure, falling barometer measurements can signal that bad weather is on the way. In general, if a low pressure system is on its way, be prepared for warmer weather with storms and rain. If a high pressure system is coming, you can expect clear skies and cooler temperatures.
hope this helped:)
Brainliest?
Answer:
time required after impact for a puck is 2.18 seconds
Explanation:
given data
mass = 30 g = 0.03 kg
diameter = 100 mm = 0.1 m
thick = 0.1 mm = 1 × m
dynamic viscosity = 1.75 × Ns/m²
air temperature = 15°C
to find out
time required after impact for a puck to lose 10%
solution
we know velocity varies here 0 to v
we consider here initial velocity = v
so final velocity = 0.9v
so change in velocity is du = v
and clearance dy = h
and shear stress acting on surface is here express as
= µ
so
= µ ............1
put here value
= 1.75× ×
= 0.175 v
and
area between air and puck is given by
Area =
area =
area = 7.85 × m²
so
force on puck is express as
Force = × area
force = 0.175 v × 7.85 ×
force = 1.374 × v
and now apply newton second law
force = mass × acceleration
- force =
- 1.374 × v =
t =
time = 2.18
so time required after impact for a puck is 2.18 seconds
electromagnet
When a electric current is passed through an insulated wire that is coiled around an iron core, like a nail, an electromagnet is created.