If you, for example, poured it onto a wide cup with a volume equal to the total volume of the sand particles, the sand would not spread out to fill the container but would bunch up together in the middle.
Answer:
1. telescope
2.

f- focal length
f- focal length r- the radius of curvature of the mirror

p-the distance of the object from the vertex of the mirror
l-the distance of the figure from the vertex of the mirror
Answer:
A) Φ = 0
, B) T = 7.76 s
Explanation:
A) to find the value of the phase constant replace the value
0 = a sin (b (0- 0) + Φ)
0 = sin Φ
Φ = sin⁻¹ 0
Φ = 0
B) the period is defined by time or when the movement begins to repeat itself
So that the sine function is repeated when the angle passes 2pi
b (x- ct) = 2pi
If we are at a fixed point x = 0
b c t = 2pi
t = 2π / bc
Let's calculate
T = 2π / (33.05 245)
T = 7.76 s
Quantum numbers<span> allow us to both simplify and dig deeper into electron configurations. Electron configurations allow us to identify energy level, subshell, and the number of electrons in those locations. If you choose to go a bit further, you can also add in x,y, or z subscripts to describe the exact orbital of those subshells (for example </span><span>2<span>px</span></span>). Simply put, electron configurations are more focused on location of electrons then anything else.
<span>
Quantum numbers allow us to dig deeper into the electron configurations by allowing us to focus on electrons' quantum nature. This includes such properties as principle energy (size) (n), magnitude of angular momentum (shape) (l), orientation in space (m), and the spinning nature of the electron. In terms of connecting quantum numbers back to electron configurations, n is related to the energy level, l is related to the subshell, m is related to the orbital, and s is due to Pauli Exclusion Principle.</span>
In electromagnetic waves, energy is transferred through vibrations of electric and magnetic fields. ... In sound waves, energy is transferred through vibration of air particles or particles of a solid through which the sound travels.