Answer:
The pendulum of the clock.
Explanation:
Hi there!
The kinetic energy is the energy associated with the velocity of the object. The potential energy is the energy associated with the position of the object. In the objects listed in the question, only one object is moving: the pendulum of the clock (assuming that the clock is functioning). If the clock functions, the pendulum is moving when it is at the lowest point of its arc of motion and with maximum velocity. All potential energy that the pendulum stored when it reached the highest height, is transformed into kinetic energy at the lowest point. Thus, at that point, the object has more kinetic energy than potential energy.
Answer:
d = 10.2 m
Explanation:
When the car travels up the inclined plane, its kinetic energy will be used to do the work in climbing up. So according to the law of conservation of energy, we can write that:

where,
m = mass of car
v = speed of car at the start of plane = (36 km/h)(1000 m/1 km)(1 h/3600 s)
v = 10 m/s
F = force on the car in direction of inclination = W Sin θ
W = weight of car = mg
θ = Angle of inclinition = 30°
d = distance covered up the ramp = ?
Therefore,

<u>d = 10.2 m</u>
battery
Explanation:
Electromagnets can be created by wrapping a wire around an iron nail and running current through the wire. The electric field in the wire coil creates a magnetic field around the nail. In some cases, the nail will remain magnetised even when removed from within the wire coil
1.The answer is True
2.The answer is False
Answer:
(a). The velocity of the object is -2.496 m/s.
(b). The total distance of the object travels during the fall is 23.80 m.
Explanation:
Given that,
Time = 1.95 s
Distance = 23.5 m
(a). We need to calculate the velocity
Using equation of motion

Put the value into the formula



(b). We need to calculate the total distance the object travels during the fall
Using equation of motion

Put the value in the equation



The total time is


We need to calculate the distance
Using equation of motion

Put the value into the formula


Hence, (a). The velocity of the object is -2.496 m/s.
(b). The total distance of the object travels during the fall is 23.80 m.