Answer:
The coefficient of kinetic friction = 0.026
Explanation:
An 56 kg sled is being pulled across the snow, at constant speed,by a horizontal force of 15 N.
Here we have to note that the weight is pulled at a constant speed . This means that the net force acting on the weight is zero.
The external force acting on the body is in the forward direction and the friction acts in the backward direction.
Friction increases as the mass of the body increases.
Friction = 
We now equate this to the external force of 15 N.
15 = 
= 
= 0.026
The coefficient of kinetic friction = 0.026
90 kilograms hope this helps
Answer: yes
Explanation: because its artificial piece specifically designed to help that certain area
Answer:
Due to the fact that the comb is in terms of mass bigger than pieces of paper
Explanation:
In terms of mass, the comb is way too bigger than the piece of paper so it is virtually impossible for it to move towards the pieces of paper
According to Newton third law action and reaction are equal and opposite
Mathematically
P=m*v
Where
P= impulse is Newton
m=mass of the body
V= velocity of the body
Now since the comb has a greater mass it will not move to the paper, else the paper must have to move to it.
Answer:
Total load = 2999.126 kg
Explanation:
Let the spring constant of the shock absorber be k.
We know that the force applied on a spring is directly proportional to elongated length and the constant of proportionality is called spring constant.
Thus
Force, F = kx
where,
x = elongation = 9.1 cm 0.091 m
mass of the people, m = 127 kg
F = weight of the people = mg = 127 x 9.8 = 1244.6 N
substituting these values in the first equation,
1244.6 = k x 0.091
thus, k = 13,676.923 N/m
Now we know that the time period, T of an oscillating spring with a load of mass m is


thus,

T = 1.66s
substituting these values in the equation,
m = 2999.126 kg