Hello!
This is a matter of superposition.
When the waves peak at the same time and place, they produce constructive interference, meaning the waves interact together in a positive way, to make a wave with Amplitude of both waves added together. When the peaks differ however, at the same time and place, then it is destructive interference and the waves essentially cancel each other out.
Hope this helps. Any questions please just ask. Thank you kindly.
Answer:

Explanation:
As per thermal radiation we know that rate is heat radiation is given as

here we know that
T = 34 degree C = 307 K

e = 0.557


now we have




The line at the bottom of the picture ... probably the first line on a list of choices .. is the correct equation.
I think its E. the control rods are used to control <span>the fission rate of uranium and plutonium. Hope this helps!! </span>