1- One mole is = 6.02 x 10^23 of anything, So one mole of atoms is 6.02x10^23.
2- when the balloon contains 0.15 moles of Co2 gas so:
the no.of molecules of Co2 = 0.15 x 6.02x 10^23
= 9.0 x 10^22
Answer:
The dissociation constant of phenol from given information is
.
Explanation:
The measured pH of the solution = 5.153

Initially c
At eq'm c-x x x
The expression of dissociation constant is given as:
![K_a=\frac{[C_6H_5O^-][H^+]}{[C_6H_5OOH]}](https://tex.z-dn.net/?f=K_a%3D%5Cfrac%7B%5BC_6H_5O%5E-%5D%5BH%5E%2B%5D%7D%7B%5BC_6H_5OOH%5D%7D)
Concentration of phenoxide ions and hydrogen ions are equal to x.
![pH=-\log[x]](https://tex.z-dn.net/?f=pH%3D-%5Clog%5Bx%5D)
![5.153=-\log[x]](https://tex.z-dn.net/?f=5.153%3D-%5Clog%5Bx%5D)



The dissociation constant of phenol from given information is
.
The image of the bonds are missing, so i have attached it.
Answer:
A) - Sigma bond
-Sp³ and Sp³
- None
B) - Sigma and pi bond
- Sp² of C and p of O
- p of C and P of O
Explanation:
A) For compound 1;
- the molecular orbital type is sigma bond due to the end-to-end overlapping.
- Atomic orbitals in the sigma bond will be Sp³ and Sp³
- Atomic orbitals in the pi bond would be nil because there is no pi bond.
B) For compound 2;
- the molecular orbital type is sigma and pi bond
-Atomic orbitals in the sigma bond would be Sp² of C and p of O
- The Atomic orbitals in the pi bond will be; p of C and p of O