"Compound" is the one among the following choices given in the question that is the <span>most specific classification of Ca(NO3)2. The correct option among all the options that are given in the question is the second option. It is actually an inorganic compound. I hope that this is the answer that has come to your help.</span>
Answer:
T2 =21.52°C
Explanation:
Given data:
Specific heat capacity of sample = 1.1 J/g.°C
Mass of sample = 385 g
Initial temperature = 19.5°C
Heat absorbed = 885 J
Solution:
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = Final temperature - initial temperature
885J = 385 g× 1.1 J/g.°C×(T2 - 19.5°C )
885 J = 423.5 J/°C× (T2 - 19.5°C )
885 J / 423.5 J/°C = (T2 - 19.5°C )
2.02°C = (T2 - 19.5°C )
T2 = 2.02°C + 19.5°C
T2 =21.52°C
Answer: Option (B) is the correct answer.
Explanation:
- An ionic bond is formed by the sharing of electrons between two chemically combining atoms.
In an ionic bond, there occurs attraction between oppositely charged ions due to which there occurs strong forces of attraction between them. Therefore, ionic bonds are the strongest bonds.
- A polar covalent bond is formed due to unequal sharing of electrons between the combining atoms.
For example,
is a polar covalent compound. Partial opposite charges tend to develop on the atoms of a polar covalent compound.
- A non-polar covalent bond is formed due to equal sharing of electrons between the combining atoms.
For example,
is a non-polar covalent molecule. No partial charges will be there on the atoms of a non-polar covalent molecule.
- A hydrogen bond is defined as the bond formed between a hydrogen atom and an electronegative atom.
For example, in HCl compound there occurs hydrogen bonding.
In this type of bond, dipole-dipole attractive interactions tend to take place. And, strength of hydrogen bonds is very weak.
Thus, we can conclude that given bond types are arranged in order of increasing strength as follows.
Hydrogen bonds < non-polar covalent bonds < polar covalent bonds < ionic bonds
Hmm... interesting topic you're writing about here!
Well, for this essay, there must be specific criteria, correct? I'll make some suggestions, but of course you don't have to go by them if you don't like 'em. So... here they are!:
- List the physical and chemical properties of glue
- List the physical and chemical properties of liquid corn starch
- Compare and contrast the physical and chemical properties of glue with the physical and chemical properties of liquid corn starch
- You can conduct some experiments with the two substances also! You can mix the two together and see how they react with each other, and incorporate the results of the experiment into your essay.
- You can mix glue with some other liquid substances too, and incorporate your results into your essay. You can see whether each substance the glue mixes with creates a homogeneous or heterogeneous mixture, etc.
- You can mix liquid corn starch with some other liquid substances too, and incorporate your results into your essay. You can see whether each substance the liquid corn starch mixes with creates a homogeneous or heterogeneous mixture, etc.
That's all I can come up with at the moment. Maybe you'll take some of these suggestions into consideration...? Anyhow, I hope I helped somehow! :)
Answer:
3.15 × 10⁻⁶ mol H₂/L.s
1.05 × 10⁻⁶ mol N₂/L.s
Explanation:
Step 1: Write the balanced equation
2 NH₃ ⇒ 3 H₂ + N₂
Step 2: Calculate the rate of production of H₂
The molar ratio of NH₃ to H₂ is 2:3. Given the rate of decomposition of NH₃ is 2.10 × 10⁻⁶ mol/L.s, the rate of production of H₂ is:
2.10 × 10⁻⁶ mol NH₃/L.s × 3 mol H₂/2 mol NH₃ = 3.15 × 10⁻⁶ mol H₂/L.s
Step 3: Calculate the rate of production of N₂
The molar ratio of NH₃ to N₂ is 2:1. Given the rate of decomposition of NH₃ is 2.10 × 10⁻⁶ mol/L.s, the rate of production of N₂ is:
2.10 × 10⁻⁶ mol NH₃/L.s × 1 mol N₂/2 mol NH₃ = 1.05 × 10⁻⁶ mol N₂/L.s