The scientist who discovered the two elements radium and polonium would be Marie Curie in 1898.
Hope this helps!
Answer:
The work done by gravity during the roll is 490.6 J
Explanation:
The work (W) is:

<em>Where</em>:
F: is the force
d: is the displacement = 20 m
The force is equal to the weight (W) in the x component:

<em>Where:</em>
m: is the mass of the bowling ball = 5 kg
g: is the gravity = 9.81 m/s²
θ: is the degree angle to the horizontal = 30°
Now, we can find the work:
Therefore, the work done by gravity during the roll is 490.6 J.
I hope it helps you!
<h2>
Answer:</h2>
143μH
<h2>
Explanation:</h2>
The inductance (L) of a coil wire (e.g solenoid) is given by;
L = μ₀N²A / l --------------(i)
Where;
l = the length of the solenoid
A = cross-sectional area of the solenoid
N= number of turns of the solenoid
μ₀ = permeability of free space = 4π x 10⁻⁷ N/A²
<em>From the question;</em>
N = 183 turns
l = 2.09cm = 0.0209m
diameter, d = 9.49mm = 0.00949m
<em>But;</em>
A = π d² / 4 [Take π = 3.142 and substitute d = 0.00949m]
A = 3.142 x 0.00949² / 4
A = 7.1 x 10⁻⁵m²
<em>Substitute these values into equation (i) as follows;</em>
L = 4π x 10⁻⁷ x 183² x 7.1 x 10⁻⁵ / 0.0209 [Take π = 3.142]
L = 4(3.142) x 10⁻⁷ x 183² x 7.1 x 10⁻⁵ / 0.0209
L = 143 x 10⁻⁶ H
L = 143 μH
Therefore the inductance in microhenrys of the Tarik's solenoid is 143
Answer:
98.13m
Explanation:
Complete question
Daniel is 50.0 meters away from a building. Tip of the building makes an angle of 63.0° with the horizontal. What is the height of the building
CHECK THE ATTACHMENT
From the figure, using trigonometry
Tan(θ ) = opposite/adjacent
Where Angle (θ )= 63°
Opposite= X = height of the building
Adjacent= 50 m
Then substitute the values we have
Tan(63)= X/50
1.9626= X/50
X= 1.9626 × 50
X= 98.13m
Hence, the height of the building is 98.13m
Answer:
Our drinking water comes from lakes, rivers and groundwater. For most Americans, the water then flows from intake points to a treatment plant, a storage tank, and then to our houses through various pipe systems. A typical water treatment process.
Explanation: