Answer:
total work is 99.138 kJ
Explanation:
given data
diameter = 5 cm
depth = 75 m
density = 1830 kg/m³
to find out
the total work
solution
we know mass of volume is
volume = 
volume = 
so
work required to rise the mass to the height of x m
dw =
gx dx
so total work is integrate it with 0 to 75
w = 
w =
× 0.05² × 1830× 9.81× 
w = 99138.53 J
so total work is 99.138 kJ
Answer:

Explanation:
given,
mass of the weight = 8 Kg
distance = 0.55 m
angle below horizontal = 30°
torque about shoulder




torque about his shoulder join is equal to 
<h2>ANSWER: </h2><h2>_____________________________________</h2><h2>TYPES OF CHEMICAL REACTIONS:</h2>
There are two types of Reactions,
<h3>
Endothermic Reactions: </h3>
Endothermic reactions are the type chemical reaction in which the reactants absorb heat energy from the surroundings. The energy of reactants is more than the energy of product
<h3>Exothermic Reactions: </h3>
Exothermic reactions are the type of chemical reactions in which release of energy takes place in the form of heat or light. In an exothermic reaction, energy is released. The energy of the products is less than the energy of the reactants.
<h2>_____________________________________</h2><h3 /><h3>In Question number 5,</h3>
The key word is "RELEASE". The reaction in which energy is released is the Exothermic reaction thus the Option B that is EXOTHERMIC REACTION is correct.
<h2>_____________________________________</h2><h3 /><h3>In Question number 6</h3>
It is asking that which process stores the energy that means it is asking which process undergoes endothermic reaction. The answer is Option C that is PHOTOSYNTHESIS is correct.
<h3>__________________________________________________</h3><h3>WHY PHOTOSYNTHESIS?</h3>
Because, sunlight is being absorbed during the reaction and according to the definition of endothermic reaction if heat is being absorbed it is termed as an endothermic reaction.
<h3>__________________________________________________</h3><h3 /><h3 />
Answer:
well its simple the worker wouldn't actually be working
D When it is stretched ready to shoot at the wall