1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
allsm [11]
3 years ago
15

Will both buzzers sound in this circuit?

Physics
1 answer:
kobusy [5.1K]3 years ago
6 0

QUESTION:

Will both buzzers sound in this circuit?

ANSWER:

No, Only first buzzer sound. It is because the 2nd buzzer doesn't connected.

You might be interested in
Calculate (a) the torque, (b) the energy, and (c) the average power required to accelerate Earth in 4.0 days from rest to its pr
natima [27]
<h2>Answer:</h2>

Torque = <em>2.05 x 10²⁸ Nm</em>

Energy = <em>3.54 x 10³³ J</em>

Average power = <em>1.02 x 10²⁸ W</em>

<h2>Explanation:</h2>

(a) Torque (τ) is the rotational effect of a given force.  

It is given by

τ = I x α          -------------(i)

Where;

I = rotational inertia of the object

α = angular acceleration of the object.

In this case, the object is the Earth. Therefore,

I = 9.71 x 10³⁷ kg m²

α = ω / t

Where;

ω = angular velocity of earth = 2π rad / day

<em>Since </em>

<em>1 day = 24 hours and 1 hour = 3600seconds</em>

<em>1 day = 24 x 3600 seconds = 86400seconds</em>

<em>=> ω = 2π rad / 86400seconds</em>

<em>=> ω = 7.29 × 10⁻⁵ rad/s</em>

<em />

t = 4 days = 4 x 24 x 3600 seconds = 345600 seconds

=> α = ω / t

=> α = 7.29 × 10⁻⁵ / 345600

=> α = (7.29 × 10⁻⁵) / (3.456 x 10⁵)

=> α = (7.29 × 10⁻⁵⁻⁵) / (3.456)

=> α = (7.29 × 10⁻¹⁰) / (3.456)

=> α = 2.11 × 10⁻¹⁰ rad/s²

Now substitute the values of I and α into equation (i)

τ = 9.71 x 10³⁷ x 2.11 × 10⁻¹⁰

τ = 9.71 x 10²⁷ x 2.11

τ = 20.5 x 10²⁷ Nm

τ = 2.05 x 10²⁸ Nm

(ii) The energy (rotational energy) E is given by;

E = \frac{1}{2} x I x ω

E = \frac{1}{2} x 9.71 x 10³⁷ x 7.29 × 10⁻⁵

E = 35.4 x 10³² J

E = 3.54 x 10³³ J

(iii) The average power P, is given by;

P = E / t

P = 3.54 x 10³³ / 345600

P = 1.02 x 10²⁸ W

5 0
3 years ago
Batman (95kg) is standing on top of a 50m high building looking out over the city of Gotham. Given that he uses the potential en
Oksanka [162]

Answer:

47 kJoules (kJ)

Explanation:

Potential enegy on Earth is given by the relationship:

P.E. = mgh, where m is mass, g is the acceleration due to Earth's gravity, and h is height. Since we are given metric values, we will look for an answer that is consistent with Joules, the metric measure of energy. 1 Joule is defined as 1 kg*m^2/s^2, so we wnat units of kg, m, and sec.

We are given:

m = 95kg

h = 50 meters

Earth's gravity, g is 9.8 m/s^2

Enter the data:

P.E. = mgh

P.E. = (95kg)(9.8m/s^2)(50m)

P.E. = 46550 kg*m^2/s^2 or 46550 Joules(J)

Since we only have 2 sig figs, and since 1kJ =- 1000J

We can state the potential energy is 47kJ.

Spiderman has 47kJ of potential energy for the start of any dive back to Earth. [He needed that same amount of energy to reach that height, but we don't know from where it came. A jump, helicopter, beamed up by Scotty, or tossed up by Doctor Octopus.]

3 0
1 year ago
A hot air balloon is hovering in the air when it drops a 40 Kg food package to some lost golfers. If the package is dropped from
UNO [17]
We can calculate this with the law of conservation of energy. Here we have a food package with a mass m=40 kg, that is in the height h=500 m and all of it's energy is potential. When it is dropped, it's potential energy gets converted into kinetic energy. So we can say that its kinetic and potential energy are equal, because we are neglecting air resistance:

Ek=Ep, where Ek=(1/2)*m*v² and Ep=m*g*h, where m is the mass of the body, g=9.81 m/s² and h is the height of the body.

(1/2)*m*v²=m*g*h, masses cancel out and we get:

(1/2)*v²=g*h, and we multiply by 2 both sides of the equation

v²=2*g*h, and we take the square root to get v:

v=√(2*g*h)

v=99.04 m/s

So the package is moving with the speed of v= 99.04 m/s when it hits the ground. 
5 0
3 years ago
How does a rubber rod become negatively charged through friction?
stira [4]
I think it is c I'm only in 7th grade but I'm pretty sure that the answer is c
5 0
3 years ago
Read 2 more answers
A girl stands on the edge of a merry-go-round of radius 1.71 m. If the merry go round uniformly accerlerates from rest to 20 rpm
Mashutka [201]

Answer:

a = 0.53 m/s^2

Explanation:

initially the merry go round is at rest

after 6.73 s the merry go round will accelerates to 20 rpm

so final angular speed is given as

\omega = 2\pi f

\omega = 2\pi ( \frac{20}{60})

\omega = 2.10 rad/s

so final tangential speed is given as

v = r\omega

v = 1.71 (2.10) = 3.58 m/s

now average acceleration of the girl is given as

a = \frac{v_f - v_i}{\Delta t}

a = \frac{3.58 - 0}{6.73}

a = 0.53 m/s^2

8 0
3 years ago
Other questions:
  • An electrical connection between an electrical circuit or equipment and the earth is called a
    13·1 answer
  • Which material would be best to use for heating up food
    15·2 answers
  • A 200 kg weather rocket is loaded with 100 kg of fuel and fired straight up. It accelerates upward at 30 m/s2 for 30 s, then run
    10·1 answer
  • Calculate the acceleration of a train travelling from rest to 24 m/s in 12 seconds.
    8·1 answer
  • If the standard kilogram bar kept in Paris were subjected to a net force of 1 newton, what acceleration would it have as a resul
    7·2 answers
  • A vehicle has an initial velocity of 30 meters per second. 30 seconds later, it is traveling at a velocity of 60 meters per seco
    15·1 answer
  • Can anyone explain<br>if knows​
    7·2 answers
  • When is thermal equilibrium achived between two identical objects<br><br><br><br>need help ASAP
    10·1 answer
  • What happens to the gravitational force between two objects when the distance between them increases by 3 times?
    5·1 answer
  • I'LL MARK U BRAINLIST!!!!!!!!!!!!!!!!!!!!!!!!!!!!
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!