The specific heat of a material is 0.137 J/g°C.
<u>Explanation:</u>
The specific heat formula relates the heat energy required to perform a certain reaction with the mass of the reactants, specific heat and the change in temperature during the reaction.
Q = mcΔT
Here m is the mass, Q is the heat energy required, ΔT is the change in temperature and c is the specific heat.
So, if we have to determine the specific heat of the object, then we have to determine the ratio of heat required to mass of the object with change in time, as shown below.

As mass of the object m is given as 35 g and the energy is said to be absorbed so Q = 96 J.
The temperature values given should be changed from kelvin to celsius first. So, initial temperature 293 K will become 293-273.15 = 19.85°C.
Similarly, the final temperature will be 313 - 273.15 = 39.85°C.
Then, ΔT = 39.85-19.85 = 20 °C
Then,

So, the specific heat of a material is 0.137 J/g°C.
Yes, it is possible to decrease the resistance of a wire without changing the material it made out of. This is because, there are many factors which affect the resistance of a wire. These factors can be manipulated to change the resistance of the wire. The factors include: cross sectional area of the wire, length of the wire, temperature and the material of the wire. The other three factors can be manipulated to change the resistance of the wire without changing the material of the wire.
We know the law of conservation of mass
- It states that mass is neither formed nor destroyed in any chemical reaction.
- Mass of reactants=Mass of products.
Here
- Mg and I_2 are reactants
- MgI_2 is product with some yield.
- Mass of reactants=10+60.0=70.0g
- Mass of MgI_2=53.88g
- Mass of yield=Product-MgI_2=70-53.88=16.12g
Lets find the percentage


