1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ss7ja [257]
3 years ago
5

A spherical steel container 3 feet in diameter is buried in a land fill. The container is filled with a chemical that keeps the

outer surface of the container at 100°F, whereas the earth's surface is at 50°F. Determine the heat transfer from the container if it is buried under 3 feet of earth.
Engineering
1 answer:
zmey [24]3 years ago
5 0

Answer:

Q = 378.247 Bt/hr

Explanation:

given data:

diameter of container = 3 m

so r =  1.5 m

T1 = 50°C

T2 = 100°C

depth y = 3 ft

Heat transfer is given as Q

Q = SK\Delta T

Where

S =  Shape factor for the object

S = \frac{4\pi r}{1-\frac{r}{2y}}

S = \frac{4\pi *1.5}{1-\frac{1.5}{2*3}}

S = 25.132 ft

Q = SK\Delta T

Q = 25.132*0.301 *(100-50)

Q = 378.247 Bt/hr

You might be interested in
Consider the expansion of a gas at a constant temperature in a water-cooled piston-cylinder system. The constant temperature is
Leona [35]

Answer:

Q_{in} = W_{out} = nRT ln (\frac{V_{2}}{V_{1}})

Explanation:

According to the first thermodynamic law, the energy must be conserved so:

dQ = dU - dW

Where Q is the heat transmitted to the system, U is the internal energy and W is the work done by the system.

This equation can be solved by integration between an initial and a final state:

(1) \int\limits^1_2 {} \, dQ = \int\limits^1_2 {} \, dU - \int\limits^1_2 {} \, dW

As per work definition:

dW = F*dr

For pressure the force F equials the pressure multiplied by the area of the piston, and considering dx as the displacement:

dW = PA*dx

Here A*dx equals the differential volume of the piston, and considering that any increment in volume is a work done by the system, the sign is negative, so:

dW = - P*dV

So the third integral in equation (1) is:

\int\limits^1_2 {- P} \, dV

Considering the gas as ideal, the pressure can be calculated as P = \frac{n*R*T}{V}, so:

\int\limits^1_2 {- P} \, dV = \int\limits^1_2 {- \frac{n*R*T}{V}} \, dV

In this particular case as the systems is closed and the temperature constant, n, R and T are constants:

\int\limits^1_2 {- \frac{n*R*T}{V}} \, dV = -nRT \int\limits^1_2 {\frac{1}{V}} \, dV

Replacion this and solving equation (1) between state 1 and 2:

\int\limits^1_2 {} \, dQ = \int\limits^1_2 {} \, dU + nRT \int\limits^1_2 {\frac{1}{V}} \, dV

Q_{2} - Q_{1} = U_{2} - U_{1} + nRT(ln V_{2} - ln V_{1})

Q_{2} - Q_{1} = U_{2} - U_{1} + nRT ln \frac{V_{2}}{V_{1}}

The internal energy depends only on the temperature of the gas, so there is no internal energy change U_{2} - U_{1} = 0, so the heat exchanged to the system equals the work done by the system:

Q_{in} = W_{out} = nRT ln (\frac{V_{2}}{V_{1}})

4 0
3 years ago
Assuming the transition to turbulence for flow over a flat plate happens at a Reynolds number of 5x105, determine the following
torisob [31]

Given:

Assuming the transition to turbulence for flow over a flat plate happens at a Reynolds number of 5x105, determine the following for air at 300 K and engine oil at 380 K. Assume the free stream velocity is 3 m/s.

To Find:

a. The distance from the leading edge at which the transition will occur.

b. Expressions for the momentum and thermal boundary layer thicknesses as a function of x for a laminar boundary layer

c. Which fluid has a higher heat transfer

Calculation:

The transition from the lamina to turbulent begins when the critical Reynolds

number reaches 5\times 10^5

(a).  \;\text{Rex}_{cr}=5 \times 10^5\\\\\frac{\rho\;vx}{\mu}=5 \times 10^5\\\text{density of of air at}\;300K=1.16  \frac{kg}{m\cdot s}\\\text{viscosity of of air at}\;300K=1.846 \times 10^{-5} \frac{kg}{m\cdot s} \\v=3m/s\\\Rightarrow x=\frac{5\times 10^5 \times 1.846 \times 10^{-5} }{1.16 \times 3} =2.652 \;m \;\text{for air}\\(\text{similarly for engine oil at 380 K for given}\; \rho \;\text{and} \;\mu)\\

(b).\; \text{For the lamina boundary layer momentum boundary layer thickness is given by}:\\\frac{\delta}{x} =\frac{5}{\sqrt{R_e}}\;\;\;\;\quad\text{for}\; R_e(c). \frac{\delta}{\delta_t}={P_r}^{\frac{r}{3}}\\\text{For air} \;P_r \;\text{equivalent 1 hence both momentum and heat dissipate with the same rate for oil}\; \\P_r >>1 \text{heat diffuse very slowly}\\\text{So heat transfer rate will be high for air.}\\\text{Convective heat transfer coefficient will be high for engine oil.}

7 0
3 years ago
Consider a drug-eluting balloon catheter deployed into a blood vessel. The balloon is inflated to perfectly adhere to the vessel
GaryK [48]

Answer:

a)  Cr = Co - Fx / D

b)   ΔC / Δx = ( CR - Cr )  / ( xR - xRo )

Explanation:

A) Derive an expression for the profile c(r) inside the tissue

F = DΔC / X  = D ( Co - Cr ) / X   ------ 1

where : F = flux , D = drug diffusion coefficient

            X = radial distance between Ro and R

Hence : Cr = Co - Fx / D

B) Express the diffusive flux at outer surface of the balloon

Diffusive flux at outer surface =  ΔC / Δx = CR - Cr / xR - xRo

6 0
3 years ago
Use the diagram to determine the voltage drop of the conductors. (Round the FINAL answer to two decimal places.)
Kaylis [27]

Answer:

Do you need shown work for all of this?

7 0
3 years ago
What is the last step to the design process?
ryzh [129]

Answer:

B: Present solution

4 0
3 years ago
Other questions:
  • A sheet of steel 4.4 mm thick has nitrogen atmospheres on both sides at 1200°C and is permitted to achieve a steady-state diffus
    10·1 answer
  • Which of the following is an example of seeking accreditation?
    7·1 answer
  • A ship tows a submerged cylinder, 1.5 m in diameter and 22 m long, at U = 5 m/s in fresh water at 20°C. Estimate the towing powe
    14·1 answer
  • I will put other link in comments
    12·1 answer
  • Describe in your own words the three strengthening mechanisms
    7·1 answer
  • In order to be a Mechanical Engineer, you need to:
    5·2 answers
  • If fog is so bad that I can’t see for short distance what should I do
    9·2 answers
  • Two children are playing on a seesaw. The child on the left weighs 50 lbs. And the child on the right weighs 100 lbs. If the chi
    5·1 answer
  • 8. Block A shown in the figure below weighs 2000 N. The chord attached to A passes over a
    9·1 answer
  • Reason fo I.EE regulations in electrical installations​
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!