Answer:
O is truse is the best answer hhahahha
Explanation:
Answer:
a. The very first liquid process, when heated from 1250 degree Celsius, is expected to form at the temperature by which the vertical line crosses the phase boundary (a -(a + L)) which is about <em>1310 degree Celsius. </em>
b. The structure of that first liquid is identified by the intersection with ((a+ L)-L) phase boundary; <em>47wt %of Ni</em> is of a tie line formed across the (a+ L) phase area <em>at 1310 degrees.</em>
c. To find the alloy's full melting, it is determined that the intersection of the same vertical line at 60 wt percent Ni with (a -(a+L)) phase boundary is around <em>1350 degrees.</em>
c. The structure of the last remaining solid before full melting correlates to the intersection with the phase boundary (a -(a + L), of the tie line built at 1350 degrees across the (a + L) phase area, <em>being 72wt % of Ni.</em>
Answer: The force exerted on the dough.
Explanation:
The force is responsible for stimulating the stress.
Recall that:
stress= Tensile force/area.
Answer:
i) 796.18 N/mm^2
ii) 1111.11 N/mm^2
Explanation:
Initial diameter ( D ) = 12 mm
Gage Length = 50 mm
maximum load ( P ) = 90 KN
Fractures at = 70 KN
minimum diameter at fracture = 10mm
<u>Calculate the engineering stress at Maximum load and the True fracture stress</u>
<em>i) Engineering stress at maximum load = P/ A </em>
= P /
= 90 * 10^3 / ( 3.14 * 12^2 ) / 4
= 90,000 / 113.04 = 796.18 N/mm^2
<em>ii) True Fracture stress = P/A </em>
= 90 * 10^3 / ( 3.24 * 10^2) / 4
= 90000 / 81 = 1111.11 N/mm^2