Answer:
The correct answer is option b. "He passed cathode rays through a magnetic field and measured the deflection".
Explanation:
J. J. Thomson was a notorious scientist that did not only made the discovery of the electron, but he measure its charge to mass ratio. In order to determine this property, Thomson passed cathode rays through a magnetic field and measured the deflection. Cathode rays are actually composed of particles, which are now known as electrons, and its charge to mass ratio is about 10^8 coulomb per gram.
This problem is providing information about the mass of a tennis ball, 56.6 g (0.0566 kg) and asks for the velocity it will have to equal the wavelength of green light, which is 5400 A or 540 nm (5.4x10⁻⁷ m). Thus, after doing the math, the result is 2.17x10⁻²⁶ m/s.
<h3>
Broglie's wavelength:</h3>
In this case, we recall the formula of the Broglie's wavelength as shown below:

Whereas lambda is the wavelength, h is the Planck's constant, m the mass and v the speed; thus, we solve for the speed according to the question:

<h3>Calculations:</h3>
Then, we just plug in the numbers we were given to get the answer:

Learn more about Broglie's wavelength: brainly.com/question/5440536
Answer:
Ocean, lakes and rivers. Are all liquids.
Explanation:
Ocean, lakes and rivers. Are all liquids. Snow starts off as a liquid, evaporates into a gas and camoes back as snow.
Answer:
C. Y & Z
Explanation:
V, W are imaginary metals here because their valence electrons are typically less than 4. X, Y, Z are non-metals and have higher valence electrons. Here, if V or W bind with X, Y, or Z we make ionic bond (because metal + non metal = ionic). But, if X binds with Y or Z or any combinations of any two of the three non-metals results in covalent bond (non metal + non metal = covalent).
Thus, Y and Z make covalent.
Answer:
false
Explanation:
because elements never exist in nature as single isotopes they are always combined