1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Gemiola [76]
3 years ago
13

A 5-in.-diameter pipe is supported every 9 ft by a small frame consisting of two members asshown. Knowing that the combined weig

ht of the pipe and its contents is 10 lb/ft and neglectingthe effect of friction, determine the magnitude and location of the maximum bending moment inmembersACandBC.

Engineering
1 answer:
jarptica [38.1K]3 years ago
5 0

Answer:

AC: at D , M_max = 12.25 lb-ft

BC: at E , M_max = 8.75 lb-ft

Explanation:

Given:

- The diameter of the pipe d = 5-in

- The pipe is supported every L = 9 ft of pipe in length

- The weight if the pipe + contents W = 10 lb/ft

Find:

determine the magnitude and location of the maximum bending moment in members AC and BC.

Solution:

- The figure (missing) is given in the attachment.

- We will first determine the external forces acting on each member:

             Section: 9-ft section of pipe.

                     Sum of forces perpendicular to member AC = 0

                     F_d - 0.8*W*L = 0

                     F_d = 0.8*10*9 = 72 lb

                     Sum of forces perpendicular to member BC = 0

                     F_e - 0.6*W*L = 0

                     F_e = 0.6*10*9 = 54 lb

              F_d = 72 lb ,  F_e = 54 lb

- Then we will determine the support reactions for each member AC point A and BC point B.

              Section: Entire Frame.

                    Sum of moments about point B = 0

                    -A_y*(18.75/12) + F_d*(d /2*12) + F_e*((11.25-2.5)/12) = 0

                    -A_y*(1.5625) + 15 + 39.375 = 0

                    A_y = 34.8 lb  

                   Sum of forces in vertical direction = 0

                     A_y + B_y - 0.8*F_d - 0.6*F_e = 0

                     B_y = 0.8*(72) + 0.6*(54) - 34.8

                     B_y = 55.2 lb  

                   Sum of forces in horizontal direction = 0

                     A_x + B_x - 0.6*F_d + 0.8*F_e = 0

                     A_x + B_x = 0

               Section: Member AC

                    Sum of moments about point C = 0

                     F_d*(2.5/12) - A_y*(12/12) - A_x*(9/12) = 0

                     72*2.5 - 34.8*12 - 9*A_x = 0

                     A_x = -237.6 / 9 = - 26.4 lb

                     B_x = - A_x = 26.4 lb

                     A_x = -26.4 lb  ,  B_x = 26.4 lb

- Now we will calculate bending moment for each member at different sections.

               Member AC:

                    From point A till just before point D

                     -0.6*A_x*x - A_y*0.8*x + M = 0

                     15.84*x - 27.84*x + M = 0

                      M = 12*x   ..... max value at D, x = 12.25 in

                      M_max = 12*12.25/12 = 12.25 lb-ft

               Member BC:

                    From point B till just before point E

                     -0.8*B_x*x + B_y*0.6*x + M = 0

                     -21.12*x + 33.12*x + M = 0

                      M = -12*x   ..... max value at E, x = 11.25 - 2.5 = 8.75 in

                      M_max = -12*8.75/12 = -8.75 lb-ft

- The maximum bending moments and their locations are:

                      AC: at D , M_max = 12.25 lb-ft

                      BC: at E , M_max = 8.75 lb-ft

You might be interested in
Un material determinado tiene un espesor de 30 cm y una conductividad térmica (K) de 0,04 w/m°C. En un instante dado la distribu
aksik [14]

Answer:

Para x=0:

\phi=1.2 W/m^{2}  

Para x=30 cm:

\phi=-2.4 W/m^{2}  

Explanation

Podemos utilizar la ley de Fourier par determinar el flujo de calor:

\phi=-k\frac{dT}{dx}(1)

Por lo tanto debemos encontrar la derivada de T(x) con respecto a x primero.

Usando la ley de potencia para la derivda, tenemos:

\frac{dT(x)}{dx}=300x-30

Remplezando esta derivada en (1):

\phi=-0.04(300x-30)

Para x=0:

\phi=0.04(30)

\phi=1.2 W/m^{2}  

Para x=30 cm:

\phi=-0.04(300*0.3-30)

\phi=-2.4 W/m^{2}    

Espero que te haya ayudado!

4 0
3 years ago
An alloy is evaluated for potential creep deformation in a short-term laboratory experiment. The creep rate is found to be 1% pe
LenaWriter [7]

Answer:

a) Q = 251.758 kJ/mol

b) creep rate is    = 1.751 \times 10^{-5} \% per hr

Explanation:

we know Arrhenius expression is given as

\dot \epsilon =Ce^{\frac{-Q}{RT}

where

Q is activation energy

C is pre- exponential constant

At 700 degree C creep rate is\dot \epsilon = 5.5\times 10^{-2}% per hr

At 800 degree C  creep rate is\dot \epsilon = 1% per hr

activation energy for creep is \frac{\epsilon_{800}}{\epsilon_{700}} = = \frac{C\times e^{\frac{-Q}{R(800+273)}}}{C\times e^{\frac{-Q}{R(700+273)}}}

\frac{1\%}{5.5 \times 10^{-2}\%} = e^{[\frac{-Q}{R(800+273)}] -[\frac{-Q}{R(800+273)}]}

\frac{0.01}{5.5\times 10^{-4}} = ln [e^{\frac{Q}{8.314}[\frac{1}{1073} - \frac{1}{973}]}]

solving for Q we get

Q = 251.758 kJ/mol

b) creep rate at 500 degree C

we know

C = \epsilon e^{\frac{Q}{RT}}

    =- 1\% e{\frac{251758}{8.314(500+273}} = 1.804 \times 10^{12} \% per hr

\epsilon_{500} = C e^{\frac{Q}{RT}}

                         = 1.804 \times 10^{12}  e{\frac{251758}{8.314(500+273}}

                         = 1.751 \times 10^{-5} \% per hr

4 0
3 years ago
Subcooled liquid water flows adiabatically in a constant diameter pipe past a throttling valve that is partially open. The liqui
Llana [10]

Answer:

hi-he = 0

pi-pe  = positive

ui-ue = negative

ti-te = negative

Explanation:

we know that fir the sub cool liquid water is

dQ = Tds = du +  pdv   ............1

and  Tds = dh - v dP         .............2

so now for process of throhling is irreversible when v is constant

then heat transfer is = 0 in irreversible process

so ds > 0

so here by equation 1 we can say

ds  > 0  

dv = 0 as v is constant

so that Tds = du    .................3

and du > 0

ue - ui > 0

and

now by the equation 2 throttling process  

here enthalpy is constant

so dh = 0

and Tds  = -vdP

so ds > 0  

so that -vdP > 0  

as here v is constant

so -dP =P1- P2

so P1-P2 > 0

so pressure is decrease here

5 0
3 years ago
How does sea navigation work?
ahrayia [7]

Answer:

a clock

Explanation:

you use a clock in water

3 0
2 years ago
Question: 10 of 15
Anvisha [2.4K]

Answer:

Leg length

Explanation:

The distances from the root to the edges of the legs (toes) and the height of the crown are basic measurements.

3 0
3 years ago
Other questions:
  • What is the difference between absolute and gage pressure?
    11·1 answer
  • List four reasons why we need aceuracy in machined parts.
    8·1 answer
  • Let suppose, you are going to develop a web-application for school management system. Then what architectural pattern will you u
    9·1 answer
  • ). A 50 mm diameter cylinder is subjected to an axial compressive load of 80 kN. The cylinder is partially
    8·1 answer
  • The goal of the Concept Selection phase is to (please choose the best answer): Group of answer choices
    10·1 answer
  • A car radiator is a cross-flow heat exchanger with both fluids unmixed. Water, which has a flow rate of 0.05 kg/s, enters the ra
    15·1 answer
  • U Differentiate between rotation and revolution<br>of earth.​
    6·2 answers
  • An open top concrete tank is available to a construction crew to store water. The job site has a daily requirement for 500 gallo
    10·1 answer
  • The condition where all forces acting on an object are balanced is called
    5·1 answer
  • 11. As __and___ prices continued to rise in the late 1960’s and 70's, 4 and 6 cylinder engines began to make a comeback.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!