1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Gemiola [76]
3 years ago
13

A 5-in.-diameter pipe is supported every 9 ft by a small frame consisting of two members asshown. Knowing that the combined weig

ht of the pipe and its contents is 10 lb/ft and neglectingthe effect of friction, determine the magnitude and location of the maximum bending moment inmembersACandBC.

Engineering
1 answer:
jarptica [38.1K]3 years ago
5 0

Answer:

AC: at D , M_max = 12.25 lb-ft

BC: at E , M_max = 8.75 lb-ft

Explanation:

Given:

- The diameter of the pipe d = 5-in

- The pipe is supported every L = 9 ft of pipe in length

- The weight if the pipe + contents W = 10 lb/ft

Find:

determine the magnitude and location of the maximum bending moment in members AC and BC.

Solution:

- The figure (missing) is given in the attachment.

- We will first determine the external forces acting on each member:

             Section: 9-ft section of pipe.

                     Sum of forces perpendicular to member AC = 0

                     F_d - 0.8*W*L = 0

                     F_d = 0.8*10*9 = 72 lb

                     Sum of forces perpendicular to member BC = 0

                     F_e - 0.6*W*L = 0

                     F_e = 0.6*10*9 = 54 lb

              F_d = 72 lb ,  F_e = 54 lb

- Then we will determine the support reactions for each member AC point A and BC point B.

              Section: Entire Frame.

                    Sum of moments about point B = 0

                    -A_y*(18.75/12) + F_d*(d /2*12) + F_e*((11.25-2.5)/12) = 0

                    -A_y*(1.5625) + 15 + 39.375 = 0

                    A_y = 34.8 lb  

                   Sum of forces in vertical direction = 0

                     A_y + B_y - 0.8*F_d - 0.6*F_e = 0

                     B_y = 0.8*(72) + 0.6*(54) - 34.8

                     B_y = 55.2 lb  

                   Sum of forces in horizontal direction = 0

                     A_x + B_x - 0.6*F_d + 0.8*F_e = 0

                     A_x + B_x = 0

               Section: Member AC

                    Sum of moments about point C = 0

                     F_d*(2.5/12) - A_y*(12/12) - A_x*(9/12) = 0

                     72*2.5 - 34.8*12 - 9*A_x = 0

                     A_x = -237.6 / 9 = - 26.4 lb

                     B_x = - A_x = 26.4 lb

                     A_x = -26.4 lb  ,  B_x = 26.4 lb

- Now we will calculate bending moment for each member at different sections.

               Member AC:

                    From point A till just before point D

                     -0.6*A_x*x - A_y*0.8*x + M = 0

                     15.84*x - 27.84*x + M = 0

                      M = 12*x   ..... max value at D, x = 12.25 in

                      M_max = 12*12.25/12 = 12.25 lb-ft

               Member BC:

                    From point B till just before point E

                     -0.8*B_x*x + B_y*0.6*x + M = 0

                     -21.12*x + 33.12*x + M = 0

                      M = -12*x   ..... max value at E, x = 11.25 - 2.5 = 8.75 in

                      M_max = -12*8.75/12 = -8.75 lb-ft

- The maximum bending moments and their locations are:

                      AC: at D , M_max = 12.25 lb-ft

                      BC: at E , M_max = 8.75 lb-ft

You might be interested in
A particular electromagnetic wave travelling in vacuum is detected to have a frequency of 3 × 10 12 Hz. How much time will it ta
irina1246 [14]

3×10^-12 seconds

Explanation:

T=1/f

7 0
2 years ago
Explain race condition..<br><br>don't spam..​
nalin [4]

There are lot of factors that influences race. The explanation of the term is given below.

<h3>What is the race condition?</h3>

A race condition is known to be a type of situation that one finds to be unattractive or undesirable.

This type of condition often takes when a tool, device or system tries every possible way to carry out two or more work at the same time, but due to the the nature of the tool, device or system, the work have to be done in a sequential manner or the right steps so that there will be no error.

A common and well known example of a race condition is the light switch.

Learn more about race condition from

brainly.com/question/13445523

6 0
2 years ago
Read 2 more answers
How much memory can a 32 -bit processor support ?
JulijaS [17]

It supporst only 4 Gigabytes of memory in the system

3 0
3 years ago
A 2-cm-diameter vertical water jet is injected upward by a nozzle at a speed of 15 m/s. Determine the maximum weight of a flat p
Ede4ka [16]

Answer:58.28 N

Explanation:

Given data

dia. of nozzle \left ( d\right )=2 cm

initial velocity\left ( u\right )=15 m/s

height\left ( h\right )=2m

Now velocity of jet at height of 2m

v^2-u^2=2gh

v^2=15^2-2\left ( 9.81\right )\left ( 2\right )

v=\sqrt{185.76}=13.62 m/s

Now\ forces\ on\ plate\ are\ weight\left ( Downward\right ) and jet\ force\left ( upward\right )

equating them

W=\left ( \rho Av\right )v

W=10^{3}\times \frac{\pi}{4}\left ( 0.02\right )^2\times 13.62^2

W=58.28 N

7 0
4 years ago
A part made from annealed AISI 1018 steel undergoes a 20 percent cold-work operation. Obtain the yield strength and ultimate str
Charra [1.4K]

Answer:

yield strength before cold work = 370 MPa

yield strength after cold work = 437.87 MPa

ultimate strength before cold work = 440 MPa

ultimate strength after cold work = 550 MPa

Explanation:

given data

AISI 1018 steel

cold work factor W = 20% = 0.20

to find out

yield strength and ultimate strength before and after the cold-work operation

solution

we know the properties of AISI 1018 steel is

yield strength σy =  370 MPa

ultimate tensile strength σu = 440 MPa

strength coefficient K = 600 MPa

strain hardness n = 0.21

so true strain is here ∈ = ln\frac{1}{1-0.2} = 0.223

so

yield strength after cold is

yield strength = K \varepsilon ^n

yield strength =  600*0.223^{0.21)

yield strength after cold work = 437.87 MPa

and

ultimate strength after cold work is

ultimate strength = \frac{\sigma u}{1-W}

ultimate strength = \frac{440}{1-0.2}

ultimate strength after cold work = 550 MPa

8 0
3 years ago
Other questions:
  • The net potential energy EN between two adjacent ions, is sometimes represented by the expression
    13·1 answer
  • What will happen in a wire drawing operation when the cross-sectional area has a reduction of 60% in a single pass?
    10·1 answer
  • A series R-L circuit is given. Circuit is connected to an AC voltage generator. a) Derive equations for magnitude and phase of c
    13·1 answer
  • Write a function called pyramid(height) that acceptsa parameter ""height"". It then prints a pyramid of that height
    10·1 answer
  • What's resistance in an electrical circuit? 1) Opposition to the flow of electricity 2) The ability of electricity to do work 3)
    11·1 answer
  • What should you do before you start welding?
    9·1 answer
  • which systems engineering support discipline has the goal to ensure that support considerations are an integral part of the syst
    14·1 answer
  • What is the name of the type of rocker arm stud that does not require a valve adjustment?
    12·1 answer
  • Reverse Engineering: Structural Analysis
    14·1 answer
  • 6
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!