1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Gemiola [76]
3 years ago
13

A 5-in.-diameter pipe is supported every 9 ft by a small frame consisting of two members asshown. Knowing that the combined weig

ht of the pipe and its contents is 10 lb/ft and neglectingthe effect of friction, determine the magnitude and location of the maximum bending moment inmembersACandBC.

Engineering
1 answer:
jarptica [38.1K]3 years ago
5 0

Answer:

AC: at D , M_max = 12.25 lb-ft

BC: at E , M_max = 8.75 lb-ft

Explanation:

Given:

- The diameter of the pipe d = 5-in

- The pipe is supported every L = 9 ft of pipe in length

- The weight if the pipe + contents W = 10 lb/ft

Find:

determine the magnitude and location of the maximum bending moment in members AC and BC.

Solution:

- The figure (missing) is given in the attachment.

- We will first determine the external forces acting on each member:

             Section: 9-ft section of pipe.

                     Sum of forces perpendicular to member AC = 0

                     F_d - 0.8*W*L = 0

                     F_d = 0.8*10*9 = 72 lb

                     Sum of forces perpendicular to member BC = 0

                     F_e - 0.6*W*L = 0

                     F_e = 0.6*10*9 = 54 lb

              F_d = 72 lb ,  F_e = 54 lb

- Then we will determine the support reactions for each member AC point A and BC point B.

              Section: Entire Frame.

                    Sum of moments about point B = 0

                    -A_y*(18.75/12) + F_d*(d /2*12) + F_e*((11.25-2.5)/12) = 0

                    -A_y*(1.5625) + 15 + 39.375 = 0

                    A_y = 34.8 lb  

                   Sum of forces in vertical direction = 0

                     A_y + B_y - 0.8*F_d - 0.6*F_e = 0

                     B_y = 0.8*(72) + 0.6*(54) - 34.8

                     B_y = 55.2 lb  

                   Sum of forces in horizontal direction = 0

                     A_x + B_x - 0.6*F_d + 0.8*F_e = 0

                     A_x + B_x = 0

               Section: Member AC

                    Sum of moments about point C = 0

                     F_d*(2.5/12) - A_y*(12/12) - A_x*(9/12) = 0

                     72*2.5 - 34.8*12 - 9*A_x = 0

                     A_x = -237.6 / 9 = - 26.4 lb

                     B_x = - A_x = 26.4 lb

                     A_x = -26.4 lb  ,  B_x = 26.4 lb

- Now we will calculate bending moment for each member at different sections.

               Member AC:

                    From point A till just before point D

                     -0.6*A_x*x - A_y*0.8*x + M = 0

                     15.84*x - 27.84*x + M = 0

                      M = 12*x   ..... max value at D, x = 12.25 in

                      M_max = 12*12.25/12 = 12.25 lb-ft

               Member BC:

                    From point B till just before point E

                     -0.8*B_x*x + B_y*0.6*x + M = 0

                     -21.12*x + 33.12*x + M = 0

                      M = -12*x   ..... max value at E, x = 11.25 - 2.5 = 8.75 in

                      M_max = -12*8.75/12 = -8.75 lb-ft

- The maximum bending moments and their locations are:

                      AC: at D , M_max = 12.25 lb-ft

                      BC: at E , M_max = 8.75 lb-ft

You might be interested in
Travel Time Problem: Compute the time of concentration using the Velocity, Sheet Flow Method for Non-Mountainous Orange County a
Vaselesa [24]

Answer:

Total time taken = 0.769 hour

Explanation:

using the velocity method

for sheet flow ;

Tt = \frac{0.007(nl)^{0.8} }{(Pl)^{5}s^{0.4}  }  

Tt = travel time

n = manning CaH

Pl = 25years

L = how length ( ft )

s = slope

For Location ( 1 )

s = 0.045

L = 1000 ft

n = 0.06 ( from manning's coefficient table )

Tt1 = 0.128 hour

For Location ( 2 )

s = 2.5 %

L= 750

n = 0.13

Tt2 = 0.239 hour

For Location ( 3 )

s = 1.5%

L = 500 ft

n = 0.15

Tt3 = 0.237  hour

For Location (4)

s = 0.5 %

L = 250 ft

n = 0.011

Tt4 = 0.165 hour

hence the Total time taken = Tt1 + Tt2 + Tt3 + Tt4

                                              = 0.128 + 0.239 + 0.237 + 0.165 = 0.769 hour

5 0
3 years ago
A particle is emitted from a smoke stack with diameter of 0.05 mm. In order to determine how far downstream it travels it is imp
Nikolay [14]

Answer: downward velocity = 6.9×10^-4 cm/s

Explanation: Given that the

Diameter of the smoke = 0.05 mm = 0.05/1000 m = 5 × 10^-5 m

Where radius r = 2.5 × 10^-5 m

Density = 1200 kg/m^3

Area of a sphere = 4πr^2

A = 4 × π× (2.5 × 10^-5)^2

A = 7.8 × 10^-9 m^2

Volume V = 4/3πr^3

V = 4/3 × π × (2.5 × 10^-5)^3

V = 6.5 × 10^-14 m^3

Since density = mass/ volume

Make mass the subject of formula

Mass = density × volume

Mass = 1200 × 6.5 × 10^-14

Mass M = 7.9 × 10^-11 kg

Using the formula

V = sqrt( 2Mg/ pCA)

Where

g = 9.81 m/s^2

M = mass = 7.9 × 10^-11 kg

p = density = 1200 kg/m3

C = drag coefficient = 24

A = area = 7.8 × 10^-9m^2

V = terminal velocity

Substitute all the parameters into the formula

V = sqrt[( 2 × 7.9×10^-11 × 9.8)/(1200 × 24 × 7.8×10^-9)]

V = sqrt[ 1.54 × 10^-9/2.25×10-4]

V = 6.9×10^-6 m/s

V = 6.9 × 10^-4 cm/s

6 0
3 years ago
A pump with a power of 5 kW (pump power, and not useful pump power) and an efficiency of 72 percent is used to pump water from a
almond37 [142]

Answer:

a) The mass flow rate of water is 14.683 kilograms per second.

b) The pressure difference across the pump is 245.175 kilopascals.

Explanation:

a) Let suppose that pump works at steady state. The mass flow rate of the water (\dot m), in kilograms per second, is determined by following formula:

\dot m = \frac{\eta \cdot \dot W}{g\cdot H} (1)

Where:

\dot W - Pump power, in watts.

\eta - Efficiency, no unit.

g - Gravitational acceleration, in meters per square second.

H - Hydrostatic column, in meters.

If we know that \eta = 0.72, \dot W = 5000\,W, g = 9.807\,\frac{m}{s^{2}} and H = 25\,m, then the mass flow rate of water is:

\dot m = 14.683\,\frac{kg}{s}

The mass flow rate of water is 14.683 kilograms per second.

b) The pressure difference across the pump (\Delta P), in pascals, is determined by this equation:

\Delta P = \rho\cdot g\cdot H (2)

Where \rho is the density of water, in kilograms per cubic meter.

If we know that \rho = 1000\,\frac{kg}{m^{3}}, g = 9.807\,\frac{m}{s^{2}} and H = 25\,m, then the pressure difference is:

\Delta P = 245175\,Pa

The pressure difference across the pump is 245.175 kilopascals.

4 0
3 years ago
An NMOS amplifier is to be designed to provide a 0.20-V peak output signal across a 20-kΩ load that can be used as a drain resis
sveta [45]

Answer:

Explanation:

All answers have been attached as files please check.

6 0
3 years ago
A spark ignition engine burns a fuel of calorific value 45MJkg. It compresses the air-ful mixture in accordance with PV^1.3=cons
antoniya [11.8K]

Answer:

i). Compression ratio = 3.678

ii). fuel consumption = 0.4947 kg/hr

Explanation:

Given  :

PV^{1.3}=C

Fuel calorific value = 45 MJ/kg

We know, engine efficiency is given by,

\eta = 1-\left ( \frac{1}{r_{c}} \right )^{1.3-1}

where r_{c} is compression ratio = \frac{v_{c}+v_{s}}{v_{c}}

           r_{c} = 1+\frac{v_{s}}{v_{c}}

where v_{c} is compression volume

           v_{s} is swept volume

Now it is given that swept volume at 30% of compression, 70% of the swept volume remains.

Then, v_{30}=v_{c}+0.7v_{s}

and at 70% compression, 30% of the swept volume remains

    ∴    v_{70}=v_{c}+0.3v_{s}  

We know,

\frac{P_{2}}{P_{1}}=\left ( \frac{V_{1}}{V_{2}} \right )^{n}

\frac{2.75}{1.5}=\left ( \frac{v_{c}+0.7\times v_{s}}{v_{c}+0.3\times v_{s}} \right )^{1.3}

\left ( 1.833 \right )^{\frac{1}{1.3}}=\frac{v_{c}+0.7v_{s}}{v_{c}+0.3v_{s}}\\

1.594=\frac{v_{c}+0.7v_{s}}{v_{c}+0.3v_{s}}

v_{c}+0.7v_{s}=1.594v_{c}+0.4782v_{s}

0.7v_{s}-0.4782v_{s}=1.594v_{c}-v_{c}

0.2218v_{s} = 0.594v_{c}

v_{c}=0.3734 v_{s}

∴   r_{c}= 1+\frac{v_{s}}{0.3734v_{s}}

Therefore, compression ratio is r_{c} = 3.678

Now efficiency, \eta =\left ( 1-\frac{1}{r_{c}} \right )^{0.3}

 \eta =\left ( 1-\frac{1}{3.678} \right )^{0.3}

 \eta =0.32342 , this is the ideal efficiency

Therefore actual efficiency, \eta_{act} =0.5\times \eta _{ideal}

           \eta_{act} =0.5\times 0.32342

           \eta_{act} =0.1617

Therefore total power required = 1 kW x 3600 J

                                                    = 3600 kJ

∴ we know efficiency, \eta=\frac{W_{net}}{Q_{supply}}

Q_{supply}=\frac{W_{net}}{\eta _{act}}

Q_{supply}=\frac{3600}{0.1617}

Q_{supply}=22261.78 kJ

Therefore fuel required = \frac{22261.78}{45000}

                                        = 0.4947 kg/hr      

5 0
3 years ago
Other questions:
  • What material resources and intellectual resources were used in self driving cars?
    15·1 answer
  • A hypothetical metal alloy has a grain diameter of 2.4 × 10−2 mm. After a heat treatment at 575°C for 500 min, the grain diamete
    12·1 answer
  • __________ affect(s) the amount of air conditioning required.
    12·1 answer
  • A water reservoir contains 108 metric tons of water at an average elevation of 84 m. The maximum amount of electric energy that
    5·1 answer
  • Exercise 5.46 computes the standard deviation of numbers. This exercise uses a different but equivalent formula to compute the s
    12·1 answer
  • Jnjn freeeeeeeeeeeeeeeeeeeeeeeeeeeeeee pointtttttttttt
    15·2 answers
  • For a steel alloy it has been determined that a carburizing heat treatment of 11.3 h duration will raise the carbon concentratio
    8·1 answer
  • An engineer is testing the shear strength of spot welds used on a construction site. The engineer's null hypothesis at a 5% leve
    12·1 answer
  • What do u mean by double entry bookkeeping system?<br>u fellas don't spam pls​
    12·2 answers
  • Which contemporary jazz artist was one of the first to use a synthesizer in their recording
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!