Answer:-
0.229 L
Explanation:-
Molar mass of AgBr = 107.87 x 1 + 79.9 x 1
=187.77 grams mol-1
Mass of AgBr = 150 grams
Number of moles of AgBr = 150 grams / 187.77 gram mol-1
= 0.8 mol
The balanced chemical equation is
NaBr (aq) + AgNO3 (aq)--> AgBr(s) + NaNO3(aq)
From the equation we can see that
1 mol of AgBr is produced from 1 mol of AgNO3.
∴ 0.8 mol of AgBr is produced from 1 x 0.8 / 1 = 0.8 mol of AgNO3.
Strength of AgNO3 = 3.5 M
Volume of AgNO3 required = Number of moles / strength
= 0.8 moles / 3.5
=0.229 L
Answer:
The pressure of the gas will "increases by a factor of four."
Explanation:
The absolute zero in other words called as the absolute temperature. Whereas the absolute zero is the least possible temperature. In which nothing will remain cold and no heat can be released or present in the substance. When it is described in the figure it will be, –273.15 degrees Celsius on the Celsius scale. and 0 K on the Kelvin scale. This absolute temperature concept has been raised from the third law of the thermodynamics.
Answer:
All around you there are chemical reactions taking place. Green plants are photosynthesising, car engines are relying on the reaction between petrol and air and your body is performing many complex reactions. In this chapter we will look at two common types of reactions that can occur in the world around you and in the chemistry laboratory. These two types of reactions are acid-base reactions and redox reactions.
Explanation:
Answer:
The ground state configuration is the lowest energy, most stable arrangement. An excited state configuration is a higher energy arrangement (it requires energy input to create an excited state). Valence electrons are the electrons utilised for bonding.
or the
FIGURE 5.9 The arrow shows a second way of remembering the order in which sublevels fill. Table 5.2 shows the electron configurations of the elements with atomic numbers 1 through 18.
Element Atomic number Electron configuration
sulfur 16 1s22s22p63s23p4
chlorine 17 1s22s22p63s23p5
argon 18 1s22s22p63s23p6
or the
Two electrons
Two electrons fill the 1s orbital, and the third electron then fills the 2s orbital. Its electron configuration is 1s22s1.
Explanation:
<em>Choose </em><em>your </em><em>answer </em>
<em>brainlilest </em><em>me</em>
<em><u>CARRY </u></em><em><u>ON </u></em><em><u>LEARNING</u></em>