Answer:
a = - 50 [m/s²]
Explanation:
To solve this problem we simply have to replace the values supplied in the given equation.
Vf = final velocity = 0.5 [m/s]
Vi = initial velocity = 10 [m/s]
s = distance = 100 [m]
a = acceleration [m/s²]
Now replacing we have:
![(0.5)^{2}-(10)^{2} = 2*a*(100)\\0.25-10000=200*a\\200*a=-9999.75\\a =-50 [m/s^{2} ]](https://tex.z-dn.net/?f=%280.5%29%5E%7B2%7D-%2810%29%5E%7B2%7D%20%3D%202%2Aa%2A%28100%29%5C%5C0.25-10000%3D200%2Aa%5C%5C200%2Aa%3D-9999.75%5C%5Ca%20%3D-50%20%5Bm%2Fs%5E%7B2%7D%20%5D)
The negative sign of acceleration means that the ship slows down its velocity in order to land.
Answer:
<em><u>1)A)</u></em>
<em><u>1)A)2)A)</u></em>
<h3><em><u>Hope it helps you </u></em><em><u>♡</u></em><em><u>♡</u></em></h3>
Answer:
Explanation:
The tidal current flows to the east at 2.0 m/s and the speed of the kayaker is 3.0 m/s.
Let Vector
is the tidal current velocity as shown in the diagram.
In order to travel straight across the harbor, the vector addition of both the velocities (i.e the resultant velocity,
must be in the north direction.
Let
is the speed of the kayaker having angle \theta measured north of east as shown in the figure.
For the resultant velocity in the north direction, the tail of the vector
and head of the vector
must lie on the north-south line.
Now, for this condition, from the triangle OAB




Hence, the kayaker must paddle in the direction of
in the north of east direction.
It depends on "Potential Energy", the amount energy it could have, the amount depending on certain circumstances, like height or force. This was how traditional and some modern rollercoasters work. As the "conveyer belt" pulls you up, the higher you go, the more potential energy you have. Once you are falling down the hill, you are experiencing "Kinetic Energy". Hope it makes sence.