The answer to fill in the blank in the question above is "greater than" based on the physic of the air density. The density of air is affected by the temperature and the pressure based on the ideal gas law. A high pressure will make the air becomes denser and the bottom of swimming pool has a higher pressure than the surface<span>.</span>
correct option is C.
Explanation:
the best to test a hypothesis is not always the most obvious way
Explanation:
the formula for momentum is denoted by p=mv where p is momentum, m is mass and v is velocity. thus, the velocity before impact would be 0.060 x 30 = 1.8 kg/ms
the second one would just be 0.060 x 20 0.72kg/ms
I'm not 100 percent sure this is correct but yeah
Answer:
Titan takes 11.634 times longer to orbit Saturn as compared to Enceladus.
Explanation:
We have been given that the average distance of Enceladus from Saturn is 238,000 km; the average distance of Titan from Saturn is 1,222,000 km.
We will use Kepler's Law to solve our given problem.
Upon substituting our given values, we will get:
Taking square root of both sides, we will get:
This implies that time period of Titan about Sturn is 11.634 times more compared to time period of Enceladus about Saturn.
So, basically Titan takes 11.634 times longer to orbit Saturn as compared to Enceladus.
Answer:
After one half of the battery's useful life.
Explanation:
Batteries of the emergency locator transmitter (ELT) must be replaced or recharged after one half of the battery's useful life because if it is exposed to the high temperature for a long period of time such as the air plane parked in the sun will result in the deterioration of battery which may makes the transmitter out of order before the expiry date of the battery. So it will be safe to do that after the use of one half of the battery's life.