The correct answer for this question would be option A. When Barry is
conducting an experiment and rolls a tennis ball down a ramp, the
statement that best describes the motion of the tennis ball is that, i<span>t does not exhibit projectile motion and follows a straight path down the ramp. Hope this helps.</span>
The answer to question one is A.
The answer to question two is A.
The answer to question three is D.
Explanation:
The object is moving along the parabola y = x² and is at the point (√2, 2). Because the object is changing directions, it has a centripetal acceleration towards the center of the circle of curvature.
First, we need to find the radius of curvature. This is given by the equation:
R = [1 + (y')²]^(³/₂) / |y"|
y' = 2x and y" = 2:
R = [1 + (2x)²]^(³/₂) / |2|
R = (1 + 4x²)^(³/₂) / 2
At x = √2:
R = (1 + 4(√2)²)^(³/₂) / 2
R = (9)^(³/₂) / 2
R = 27 / 2
R = 13.5
So the centripetal force is:
F = m v² / r
F = m (5)² / 13.5
F = 1.85 m
Answer:
Explanation: In DC circuit, the current will flow for a short time, which is required to charge the capacitor. Once you switch it on, it spikes and the gradually decreases to almost zero (0) as the capacitor becomes fully charged.
In an AC circuit, the circuit acts as if the current is flowing throw the plates whereas is not actually flowing. The circuit acts like the AC is flowing through the capacitor.