I’m not too sure but I think it’s 8,91 m/s2
Answer:
speed of golf ball is 1.15 ×
m/s
and % of uncertainty in speed = 2.07 ×
%
Explanation:
given data
mass = 45.9 gram = 0.0459 kg
speed = 200 km/hr = 55.5 m/s
uncertainty position Δx = 1 mm =
m
to find out
speed of the golf ball and % of speed of the golf ball
solution
we will apply here heisenberg uncertainty principle that is
uncertainty position ×uncertainty momentum ≥
......1
Δx × ΔPx ≥
here uncertainty momentum ΔPx = mΔVx
and uncertainty velocity = ΔVx
and h = 6.626 ×
Js
so put here all these value in equation 1
× 0.0459 × ΔVx = 
ΔVx = 1.15 ×
m/s
and
so % of uncertainty in speed = ΔV / m
% of uncertainty in speed = 1.15 ×
/ 55.5
% of uncertainty in speed = 2.07 ×
%
Answer:
the normal force
Explanation:
The free-body diagram represents all the forces acting on an object. In this example, there are four forces acting on the box: an applied force, the friction (which always act opposite to the applied force), the weight of the box (which is always downward), and the normal force.
The normal force is the reaction force exerted by the surface on which the box is moving on the box, and this reaction force is always opposite to the force exerted by the box on the surface. Since the latter is downward, it means that the normal force must be upward, so in the diagram it is wrong.
The first option.
The total mechanical energy before an action (which makes up PE and KE) equals the total mechanical energy after an action.
So
KEi + PEi = KEf + PEf