Answer:
w = vR/3
Explanation:
The centre of mass of the loop to bullet system is given by D / 4 from centre of loop, which is equivalent to R / 2 from its centre.
From the principle of conservation of linear momentum
, we have
m*v = 2*m* Vcm
Where v = velocity of bullet, Vcm = velocity of wood
Hence, we have
Vcm = v2
Also, from the conservation of angular momentum about the centre of mass.
M*V*(R/2) = Ic*w - equation (I)
where Ic = moment of inertia and w = angular velocity
Ic for a ring is given by
Ic of a bullet is given by
Hence, the moment of inertia of the system is given by the summation of the two moments of inertia Ic(ring) + Ic(bullet) which gives
Ic(system) = 
Substituting back into equation (I), we have

Hence, we obtain w =vR/3
w=v3R
thats how it works and thanks for points
Answer:
Transverse
Explanation:
There are two types of waves, according to the direction of their oscillation:
- Transverse waves: in a transverse wave, the direction of the oscillation is perpendicular to the direction of motion of the wave. Examples of transverse waves are electromagnetic waves
- Longitudinal waves: in a longitudinal wave, the direction of the oscillation is parallel to the direction of motion of the wave. Examples of longitudinal waves are sound waves.
Light waves corresponds to the visible part of the electromagnetic spectrum, which includes all the different types of electromagnetic waves (which consist of oscillations of electric and magnetic fields that are perpendicular to the direction of propagation of the wave): therefore, they are transverse waves.
Answer:
force = 11.33 
Explanation:
given data:
sled mass = 17.0 kg
inital velocity (U) = 4.10 m/s
elapsed time (T) 6.15 s
final velocity (V) = 0
final momentum P2 = 0
Initial momentum of sledge is


from newton second law of motion


Kgm/s^2
[/tex]
Answer: The end point of a spring oscillates with a period of 2.0 s when a block with mass m is attached to it. When this mass is increased by 2.0 kg, the period is found to be 3.0 s. Then the mass m is 0.625kg.
Explanation: To find the answer, we need to know more about the simple harmonic motion.
<h3>
What is simple harmonic motion?</h3>
- A particle is said to execute SHM, if it moves to and fro about the mean position under the action of restoring force.
- We have the equation of time period of a SHM as,

- Where, m is the mass of the body and k is the spring constant.
<h3>How to solve the problem?</h3>

- We have to find the value of m,


Thus, we can conclude that, the mass m will be 0.625kg.
Learn more about simple harmonic motion here:
brainly.com/question/28045110
#SPJ4