1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
olganol [36]
3 years ago
15

a given box of 2 kg is in contact with the floor experiences an applied force of 150 form somebody pushing it.while in motion,it

also experiences a frictional force of 7n in the opposite direction​. Calculate the weight of the box
Physics
1 answer:
ladessa [460]3 years ago
6 0

Weight = (mass) x (gravity)

Weight = (2kg) x (9.8 m/s^2)

Weight = 19.6 N

You might be interested in
~choices below~
mart [117]
A is the correct answer
5 0
3 years ago
Read 2 more answers
Find its moment of inertia about an axis perpendicular to its plane and passing through the midpoint of the line connecting its
antoniya [11.8K]

A) Moment of inertia about an axis passing through the point where the two segments meet : $I_A=\frac{1}{12} M L^2$

B) Moment of inertia passing through the point where the midpoint of the line connects to its two ends: $I x=\frac{1}{3} M L^2$

What is Moment of inertia?

The term "moment of inertia" refers to a physical quantity that quantifies a body's resistance to having its speed of rotation along an axis changed by the application of a torque (turning force). The axis might be internal or exterior, fixed or not.

A) The moment of inertia about an axis passing through the point where the two segments meet is $I_A=\frac{1}{12} M L^2$given that the rod is bent at the center and distance from all the points to the axis remains the same, the moment of inertia about the center will remain the same.

B) Determine the moment of inertia about an axis passing through the point midpoint of the line which connects the two ends

First step: determine the distance between the ends ( d )

After applying Pythagoras theorem$\mathrm{d}=\frac{\sqrt{2}}{2} L$

Next step : determine distance between the two axis $(\mathrm{x})$

After applying Pythagoras theorem

\mathrm{x}=\frac{\sqrt{2}}{4} L$$

Final step : Calculate the value of $\mathrm{I}_{\mathrm{x}}$

applying Parallel Axis Theorem

$$I_x=I_8+M x^2$$

$$\begin{aligned}& =\frac{1}{12} M L^2+\frac{1}{4} M L^2 \\& \therefore \quad I x=\frac{1}{3} M L^2 \\&\end{aligned}$$

Hence we can conclude that Moment of inertia about an axis passing through the point where the two segments meet: $I_A=\frac{1}{12} M L^2$, Moment of inertia passing through the point where the midpoint of the line connects its two ends: $I x=\frac{1}{3} M L^2$

To learn more about moment of inertia visit:brainly.com/question/15246709

#SPJ4

5 0
1 year ago
2.) The lob in tennis is an effective tactic when your opponent is near the net. It consists of lofting the ball over his/her he
Ratling [72]

Answer:

The minimum average speed the opponent must move so that he is in position to hit the ball is approximately 5.79 m/s

Explanation:

The given parameters of the ball are;

The initial speed of the ball = 15 m/s

The direction in which the ball is launched = 50° above the horizontal

The location of the other tennis player when the ball is launched = 10 m from the ball

The time at which the other tennis player begins to run = 0.3 seconds after the ball is launched

The height at which the ball is hit back = 2.1 m above the height from which the ball is launched

The vertical position, 'y', at time, 't', of a projectile motion is given as follows;

y = (u·sinθ)·t - 1/2·g·t²

When y = 2.1 m, we have;

2.1 = (15·sin(50°))·t - 1/2·9.8·t²

∴ 4.9·t² - (15·sin(50°))·t + 2.1 = 0

Solving with the aid of a graphing calculator function, we get;

t = 0.199776187257 s or t = 2.14525782198 s

Therefore, the ball is at 2.1 m above the start point on the other side of the court at t ≈ 2.145 seconds

The horizontal distance, 'x', the ball travels at t ≈ 2.145 seconds is given as follows;

x = u × cos(50°) × t = 15 × cos(50°) × 2.145 ≈ 20.682 m

The horizontal distance the ball travels at t ≈ 2.145 seconds, x ≈ 20.682 m

Therefore, we have;

The time the other player has to reach the ball, t₂ =2.145 s - 0.3 s ≈ 1.845 s

The distance the other player has to run, d = 20.682 m - 10 m = 10.682 m

The minimum average speed the other player has to move with, v_s = d/t₂

∴ v_s = 10.682 m/(1.845 s) ≈ 5.78970189702 m/s ≈ 5.79 m/s

The minimum average speed the opponent must move so that he is in position to hit the ball, v_s ≈ 5.79 m/s.

5 0
3 years ago
A circular ring with area 4.45 cm2 is carrying a current of 13.5 A. The ring, initially at rest, is immersed in a region of unif
Gwar [14]

Answer:

a) ( 0.0015139 i^ + 0.0020185 j^ + 0.00060556 k^ ) N.m

b) ΔU = -0.000747871 J

c)  w = 47.97 rad / s

Explanation:

Given:-

- The area of the circular ring, A = 4.45 cm^2

- The current carried by circular ring, I = 13.5 Amps

- The magnetic field strength, vec ( B ) = (1.05×10−2T).(12i^+3j^−4k^)

- The magnetic moment initial orientation, vec ( μi ) = μ.(−0.8i^+0.6j^)  

- The magnetic moment final orientation, vec ( μf ) = -μ k^

- The inertia of ring, T = 6.50×10^−7 kg⋅m2

Solution:-

- First we will determine the magnitude of magnetic moment ( μ ) from the following relation:

                    μ = N*I*A

Where,

           N: The number of turns

           I : Current in coil

           A: the cross sectional area of coil

- Use the given values and determine the magnitude ( μ ) for a single coil i.e ( N = 1 ):

                    μ = 1*( 13.5 ) * ( 4.45 / 100^2 )

                    μ = 0.0060075 A-m^2

- From definition the torque on the ring is the determined from cross product of the magnetic moment vec ( μ ) and magnetic field strength vec ( B ). The torque on the ring in initial position:

             vec ( τi ) = vec ( μi ) x vec ( B )

              = 0.0060075*( -0.8 i^ + 0.6 j^ ) x 0.0105*( 12 i^ + 3 j^ -4 k^ )

              = ( -0.004806 i^ + 0.0036045 j^ ) x ( 0.126 i^ + 0.0315 j^ -0.042 k^ )

- Perform cross product:

          \left[\begin{array}{ccc}i&j&k\\-0.004806&0.0036045&0\\0.126&0.0315&-0.042\end{array}\right]  = \left[\begin{array}{ccc}-0.00015139\\-0.00020185\\-0.00060556\end{array}\right] \\\\

- The initial torque ( τi ) is written as follows:

           vec ( τi ) = ( 0.0015139 i^ + 0.0020185 j^ + 0.00060556 k^ )

           

- The magnetic potential energy ( U ) is the dot product of magnetic moment vec ( μ ) and magnetic field strength vec ( B ):

- The initial potential energy stored in the circular ring ( Ui ) is:

          Ui = - vec ( μi ) . vec ( B )

          Ui =- ( -0.004806 i^ + 0.0036045 j^ ) . ( 0.126 i^ + 0.0315 j^ -0.042 k^ )

          Ui = -[( -0.004806*0.126 ) + ( 0.0036045*0.0315 ) + ( 0*-0.042 )]

          Ui = - [(-0.000605556 + 0.00011)]

          Ui = 0.000495556 J

- The final potential energy stored in the circular ring ( Uf ) is determined in the similar manner after the ring is rotated by 90 degrees with a new magnetic moment orientation ( μf ) :

          Uf = - vec ( μf ) . vec ( B )

          Uf = - ( -0.0060075 k^ ) . ( 0.126 i^ + 0.0315 j^ -0.042 k^ )

          Uf = - [( 0*0.126 ) + ( 0*0.0315 ) + ( -0.0060075*-0.042 ) ]

          Uf = -0.000252315 J

- The decrease in magnetic potential energy of the ring is arithmetically determined:

          ΔU = Uf - Ui

          ΔU = -0.000252315 - 0.000495556  

          ΔU = -0.000747871 J

Answer: There was a decrease of ΔU = -0.000747871 J of potential energy stored in the ring.

- We will consider the system to be isolated from any fictitious forces and gravitational effects are negligible on the current carrying ring.

- The conservation of magnetic potential ( U ) energy in the form of Kinetic energy ( Ek ) is valid for the given application:

                Ui + Eki = Uf + Ekf

Where,

             Eki : The initial kinetic energy ( initially at rest ) = 0

             Ekf : The final kinetic energy at second position

- The loss in potential energy stored is due to the conversion of potential energy into rotational kinetic energy of current carrying ring.    

               -ΔU = Ekf

                0.5*T*w^2 = -ΔU

                w^2 = -ΔU*2 / T

Where,

                w: The angular speed at second position

               w = √(0.000747871*2 / 6.50×10^−7)

              w = 47.97 rad / s

6 0
3 years ago
A hollow cylinder that is rolling without slipping is given a velocity of 5.0 m/s and rolls up an incline to a vertical height o
inysia [295]

Answer:

The hollow cylinder rolled up the inclined plane by 1.91 m

Explanation:

From the principle of conservation of mechanical energy, total kinetic energy = total potential energy

M.E_T = \frac{1}{2}mv^2 + \frac{1}{2} I \omega^2 + mgh

The total energy at the bottom of the inclined plane = total energy at the top of the inclined plane.

\frac{1}{2}mv_i^2 + \frac{1}{2} I \omega_i^2 + mg(0) =  \frac{1}{2}mv_f^2 + \frac{1}{2} I \omega_f^2 + mgh

moment of inertia, I, of a hollow cylinder = ¹/₂mr²

substitute for I in the equation above;

\frac{1}{2}mv_i^2 + \frac{1}{2} (\frac{1}{2}mr^2  \omega_i^2) =  \frac{1}{2}mv_f^2 + \frac{1}{2} (\frac{1}{2}mr^2  \omega_f^2) + mgh\\\\ but \ v = r \omega\\\\\frac{1}{2}mv_i^2 + \frac{1}{2} (\frac{1}{2}m v_i^2  ) =  \frac{1}{2}mv_f^2 + \frac{1}{2} (\frac{1}{2}m v_f^2) + mgh\\\\\frac{1}{2}mv_i^2 +\frac{1}{4}mv_i^2 = \frac{1}{2}mv_f^2 +\frac{1}{4}mv_f^2 +mgh\\\\\frac{3}{4}mv_i^2 = \frac{3}{4}mv_f^2 +mgh\\\\mgh = \frac{3}{4}mv_i^2 -  \frac{3}{4}mv_f^2\\\\gh = \frac{3}{4}v_i^2 -  \frac{3}{4}v_f^2\\\\

h = \frac{3}{4g}(v_1^2 -v_f^2)

given;

v₁ = 5.0 m/s

vf = 0

g = 9.8 m/s²

h = \frac{3}{4g}(v_1^2 -v_f^2) =\frac{3}{4*9.8}(5^2 -0) = 1.91 \ m

Therefore, the hollow cylinder rolled up the inclined plane by 1.91 m

5 0
3 years ago
Other questions:
  • A thin ring of charge of radius R lies in the x-y plane and is centered on the z-axis. The linear charge density, l, of the loop
    7·1 answer
  • A plane flying against the wind covers the 900-kilometer distance between two aerodromes in 2 hours. The same plane flying with
    9·1 answer
  • Which statement accurately describes a similarity between Earth and Venus?
    5·1 answer
  • A plane designed for vertical takeoff has a mass of 8.0 × 10³ kg. Find the net work done by all forces on the plane as it accele
    6·1 answer
  • Consider a small raindrop and a large raindrop falling through the atmosphere. (a) Compare their terminal speeds. Both raindrops
    8·1 answer
  • How do exhaust from cars affect the environment
    13·1 answer
  • A 68-kg skydiver has a speed of 52 m/s at an altitude of 670 m above the
    5·1 answer
  • Calculate the area of a square with a length of 5cm
    6·2 answers
  • Please help due is 1 hour please its very urgent :(((
    13·1 answer
  • If the displacement of a horizontal mass-spring system was doubled, the elastic potential energy in the system would change by a
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!