Answer: The energy transferred is known as kinetic energy, and it depends on the mass and speed achieved.
I have done some research as well as asking some friends. This is what I came up with. Not sure if it is 100% correct.
step = time after death
1. Livor Mortis = 20-30 minutes
2. Eyes film (cloud) = 2 hours
3. Rigor Mortis begins = 4-6 hours
4. Empty small intestines = 12 hours
5. Bloating = 3-5 days
6. Decay
This problem is describing the state two gases have when separated and together as shown on the attached picture. First of all, diagram 1 shows how they are separated in two containers with apparently equal volumes, whereas diagram 2 shows the removal of the barrier so that they get mixed together.
In this case, we can analyze that each gas has its own pressure and due to the removal of the barrier, both pressure and volume undergo a change. Thus, we can infer that the final volume is doubled with respected to the initial one for each gas, causing the pressure of each gas to be halved and the total pressure the half of the added ones, in agreement to the Boyle's law (inversely proportional relationship between pressure and temperature).
Therefore, the correct choice is:
C. The partial pressure of each gas in the mixture is half its initial pressure; the final total pressure is half the sum of the initial pressures of the two gases.
Learn more:
Answer:
Order zero
Explanation:
Let's consider the decomposition of ammonia to nitrogen and hydrogen on a tungsten filament at 800°C.
2 NH₃(g) → N₂(g) + 3 H₂(g)
The generic rate law is:
rate = k × [NH₃]ⁿ
where,
rate: reaction rate
k: rate constant
n: reaction order
When n = 0, we get:
rate = k × [NH₃]⁰ = k
As we can see, when the reaction order with respect to ammonia is zero, the reaction rate is independent of the concentration of ammonia.