Explanation:
The given data is as follows.
Current (I) = 3.50 amp, Mass deposited = 100.0 g
Molar mass of Cr = 52 g
It is known that 1 faraday of electricity will deposit 1 mole of chromium. As 1 faraday means 96500 C and 1 mole of Cr means 52 g.
Therefore, 100 g of Cr will be deposited by "z" grams of electricity.

z = 
= 185576.9 C
As we know that, Q = I × t
Hence, putting the given values into the above equation as follows.
Q = I × t
185576.9 C =
t = 53021.9 sec
Thus, we can conclude that 100 g of Cr will be deposited in 53021.9 sec.
Answer:
true
Explanation:
when molecules of a solid substance is vibrating so, it means they are possessing average kinetic energy. thus, we can conclude that the statement all the molecules of a substance posses the average kinetic energy value is true.
Answer:
six neutrons
Explanation:
there are six neutrons present in C Carbon
X moles of hot water vapor(H2O) * 1 mol Fe3O4 / 4 mol H2O * 233.55g Fe3O4 / 1 mol = 275 g
Solve the equation
x = 4.71 mol of hot water vapor (steam)
Can you mark me as brainliest?
2.77mg caffeine / 1oz12oz / 1canLethal dose: 10.0g caffeine = 10,000mg caffeine First, find how much caffeine is in one can of soda, then divide that amount by the lethal dose to find the number of cans. (2.77mg caffeine / 1oz) * (12oz / 1can) = 33.24mg caffeine / 1can. (10,000mg caffeine) * (1can / 33.24mg caffeine) = 300.84 cans. Since we can't buy parts of a can of soda, then we have to round up to 301 cans. Notice how all the values were set up as ratios and how the units cancelled.