Answer:
The frequency of sound wave created by trumpet is 437.5Hz
Explanation:
Given
the speed of sound wave = 350 m
the wavelength of sound wave = 0.8 m
the frequency of sound wave = ?
All the waves have same relationship among wavelength, frequency and speed, which is given by the equation:
v = fλ, where
v is speed of the wave
f is frequency of the wave
λ is wavelength of the wave
therefore frequency of sound wave is given by
f = v/λ
= 350m
/0.8m
= 437.5
= 437.5Hz (since 1
= 1 Hz (Hertz)
Hence the frequency of sound wave created by trumpet is 437.5Hz
Answer: Point A is the answer for the potential energy. Point D is the answer for the kinetic energy.
Explanation:
Answer:
Motors commonly contain a "commutator" which allows a magnetic field due to a loop of wire to always be in a say "clockwise or counterclockwise" direction even tho the loop of wire is rotating.
That means that magnetic field due to the surrounding magnets is always in the same direction, but the magnetic field due to the rotating loop of wire is continually changing so that it will always oppose the surrounding field which remains in a constant direction.
This is most easily seen in a "DC - direct current motor".
His is a step down transformer since n(primary) is greater than n(seconcary). You relate the input voltage with the ouput voltage with the following equation:
<span>Vout = n2/n1*Vin (n2/n1 is essentially your 'transfer function' that dictates what a specified input would produce) </span>
<span>Solving the equation: </span>
<span>Vin = Vout*n1/n2 = (320V)*(600/300) = 640 V </span>
<span>This is checked by seeing if Vin is greater than Vout, which it is for a step down transformer.</span>
To solve this problem we need to use the proportional relationships between density, mass and volume, together with Newton's second law.
The force can be described as

Where,
m = Mass
g = Gravitational acceleration
At the same time the Density can be defined as

Where,
m = mass
V = Volume
Replacing the value of the mass at the equation of Force we have,

Since the difference between the two forces gives us the total Force then we have to

Where
Force of the water
= Force of plastic
Therefore with the values for this force we have,





Therefore the tension in the thread is 16.412N