This is a incomplete question. The complete question is:
It takes 348 kJ/mol to break a carbon-carbon single bond. Calculate the maximum wavelength of light for which a carbon-carbon single bond could be broken by absorbing a single photon. Round your answer to correct number of significant digits
Answer: 344 nm
Explanation:
E= energy = 348kJ= 348000 J (1kJ=1000J)
N = avogadro's number = 
h = Planck's constant = 
c = speed of light = 

Thus the maximum wavelength of light for which a carbon-carbon single bond could be broken by absorbing a single photon is 344 nm
Explanation:
The given data is as follows.
Thickness (dx) = 0.87 m, thermal conductivity (k) = 13 W/m-K
Surface area (A) = 5
, 
According to Fourier's law,
Q = 
Hence, putting the given values into the above formula as follows.
Q = 
= 
= 5902.298 W
Therefore, we can conclude that the rate of heat transfer is 5902.298 W.
Answer:
I think it is AM and frequency
Explanation:
Sorry if i'm wrong ;)
Maybe this can help.
In mechanics, speed increase is the pace of progress of the speed of an article regarding time (acceleration). Speed increases are vector amounts (in that they have greatness and direction). The direction of an item's speed increase is given by the direction of the net power following up on that article. The size of an item's speed increase, as depicted by Newton's Second Law, is the consolidated impact of two causes:
the net equilibrium of all outer powers acting onto that item — size is straightforwardly relative to this net coming about force;
that article's mass, contingent upon the materials out of which it is made — extent is conversely relative to the item's mass.