Answer:
Velocity(v) = frequency(f) × wavelength
f = 0.3165
Wavelength = 2×length(L)
L = 157cm
Convert the length in centimetres to metre = 1.57m
v = 2×1.57 × 0.3165
v = 0.99m/s
Approx. 1m/s
Explanation:
The velocity of a wave is the product of its frequency and it's wavelength. The frequency is already known. The wavelength is the distance between two successive wave crests which is formed by sloshing water back and forth in the bath tub. Sloshing water to one end of the tub will produce a wave crest first at that end then the other completing a cycle. The wavelength will be twice the length of the bath tub as it is the distance that both crests are formed.
Wave crest is the highest point of a wave, and in this case is where the water rises to a high point in the bath tub
The highest point<span> of the </span>pendulums<span> swing is when the potential energy is at its </span>highest<span> and the </span>kinetic energy<span> is at its lowest.</span>
The angular speed of the device is 1.03 rad/s.
<h3>What is the conservation of angular momentum?</h3>
A spinning system's ability to conserve angular momentum ensures that its spin will not change until it is subjected to an external torque; to put it another way, the rotation's speed will not change as long as the net torque is zero.
Using the conservation of angular momentum
Here, = the system's angular momentum before the collision
= 0 + mv
= (0.005)(450)(0.752)
= 1.692 kgm²/s
The moment of inertia of the system is given by
I = 2(M₁R₁² + M₂R₂²)+ mR₁²
= 2[(1.2)(0.8)² +(0.5)(0.3)²]+0.005(0.8)²
= 1.6292 kgm²
Here, = Iω
So,
1.692 = 1.6292(ω)
ω = 1.03 rad/s
To know more about the conservation of angular momentum, visit:
brainly.com/question/1597483
#SPJ1
The magnitude of electric field is produced by the electrons at a certain distance.
E = kQ/r²
where:
E = electric field produced
Q = charge
r = distance
k = Coulomb Law constant 9 x10^9<span> N. m</span>2<span> / C</span><span>2
Given are the following:
Q = </span><span>1.602 × 10^–19 C
</span><span>r = 38 x 10^-9 m
Substitue the given:
E = </span>
E = 998.476 kN/C