1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
GREYUIT [131]
1 year ago
11

What mass of whole blood (in kg) can be contained in a plastic container whose dimensions are 125 mm by 110 mm by 35 mm? See cha

rt for density of whole blood at 37C.

Physics
1 answer:
irakobra [83]1 year ago
4 0

The mass of whole blood is 0.51 kg.

Given data:

The dimensions of container is 125 mmx 110 mm x 35 mm.

From the chart, the density of whole blood at 37 C is,

\rho=\frac{1060kg}{m^3}

The volume of container can be calculated as,

\begin{gathered} V=125mm\times110mm\times35mm \\ V=481250mm^3\times\frac{1m^3}{10^{-9}mm^3} \\ V=4.8125\times10^{-4}m^3 \end{gathered}

The mass of whole blood will be,

\begin{gathered} \rho=\frac{m}{V} \\ \frac{1060kg}{m^3}=\frac{m}{4.8125\times10^{-4}m^3} \\ m=0.51kg \end{gathered}

Thus, the mass of whole blood is 0.51 kg.

You might be interested in
A bus starts from village A at 7:00 am and reaches village B at 8:30 am. If the distance between the villages A and B is 60 km.
SVEN [57.7K]

1.1111111111

Explanation:

v=s/t

t=8:30-7:00=1:30

convert to second=5400second

s=60km covert to meter=6000

6000/5400=1.11111111

5 0
2 years ago
Read 2 more answers
Write equations for both the electric and magnetic fields for an electromagnetic wave in the red part of the visible spectrum th
elena-14-01-66 [18.8K]

The peak magnetic field of the electromagnetic wave in the red part of the visible spectrum is 9.67 x 10⁻¹⁰ T.

<h3>Relationship between electric and magnetic field</h3>

The relationship between electric and magnetic field at a given peak electric field is given as;

c = (E₀) / (B₀)

where;

  • c is speed of light
  • E₀ is the peak electric field
  • B₀ is the peak magnetic field

B₀ = E₀ / c

B₀ = (2.9) / (3 x 10⁹)

B₀ = 9.67 x 10⁻¹⁰ T

Thus, the peak magnetic field of the electromagnetic wave in the red part of the visible spectrum is 9.67 x 10⁻¹⁰ T.

Learn more about peak magnetic field here: brainly.com/question/24487261

8 0
2 years ago
I know the enthalpy of a reaction is 23kj/mol. Initially the reaction is taking place at 273 k. To what temperature do i need to
Vladimir79 [104]

Answer:

293k

Explanation:

In this question, we are asked to calculate the temperature to which the reaction must be heated to double the equilibrium constant.

To find this value, we will need to use the Van’t Hoff equation.

Please check attachment for complete solution

7 0
3 years ago
Usain Bolt's world-record 100 m sprint on August 16, 2009, has been analyzed in detail. At the start of the race, the 94.0 kg Bo
ZanzabumX [31]

a) 893 N

b) 8.5 m/s

c) 3816 W

d) 69780 J

e) 8030 W

Explanation:

a)

The net force acting on Bolt during the acceleration phase can be written using Newton's second law of motion:

F_{net}=ma

where

m is Bolt's mass

a is the acceleration

In the first 0.890 s of motion, we have

m = 94.0 kg (Bolt's mass)

a=9.50 m/s^2 (acceleration)

So, the net force is

F_{net}=(94.0)(9.50)=893 N

And according to Newton's third law of motion, this force is equivalent to the force exerted by Bolt on the ground (because they form an action-reaction pair).

b)

Since Bolt's motion is a uniformly accelerated motion, we can find his final speed by using the following suvat equation:

v=u+at

where

v is the  final speed

u is the initial speed

a is the acceleration

t is the time

In the first phase of Bolt's race we have:

u = 0 m/s (he starts from rest)

a=9.50 m/s^2 (acceleration)

t = 0.890 s (duration of the first phase)

Solving for v,

v=0+(9.50)(0.890)=8.5 m/s

c)

First of all, we can calculate the work done by Bolt to accelerate to a speed of

v = 8.5 m/s

According to the work-energy theorem, the work done is equal to the change in kinetic energy, so

W=K_f - K_i = \frac{1}{2}mv^2-0

where

m = 94.0 kg is Bolt's mass

v = 8.5 m/s is Bolt's final speed after the first phase

K_i = 0 J is the initial kinetic energy

So the work done is

W=\frac{1}{2}(94.0)(8.5)^2=3396 J

The power expended is given by

P=\frac{W}{t}

where

t = 0.890 s is the time elapsed

Substituting,

P=\frac{3396}{0.890}=3816 W

d)

First of all, we need to find what is the average force exerted by Bolt during the remaining 8.69 s of motion.

In the first 0.890 s, the force exerted was

F_1=893 N

We know that the average force for the whole race is

F_{avg}=820 N

Which can be rewritten as

F_{avg}=\frac{0.890 F_1 + 8.69 F_2}{0.890+8.69}

And solving for F_2, we find the average force exerted by Bolt on the ground during the second phase:

F_{avg}=\frac{0.890 F_1 + 8.69 F_2}{0.890+8.69}\\F_2=\frac{(0.890+8.69)F_{avg}-0.890F_1}{8.69}=812.5 N

The net force exerted by Bolt during the second phase can be written as

F_{net}=F_2-D (1)

where D is the air drag.

The net force can also be rewritten as

F_{net}=ma

where

a=\frac{v-u}{t} is the acceleration in the second phase, with

u = 8.5 m/s is the initial speed

v = 12.4 m/s is the final speed

t = 8.69 t is the time elapsed

Substituting,

a=\frac{12.4-8.5}{8.69}=0.45 m/s^2

So we can now find the average drag force from (1):

D=F_2-F_{net}=F_2-ma=812.5 - (94.0)(0.45)=770.2 N

So the increase in Bolt's internal energy is just equal to the work done by the drag force, so:

\Delta E=W=Ds

where

d is Bolt's displacement in the second part, which can be found by using suvat equation:

s=\frac{v^2-u^2}{2a}=\frac{12.4^2-8.5^2}{2(0.45)}=90.6 m

And so,

\Delta E=Ds=(770.2)(90.6)=69780 J

e)

The power that Bolt must expend just to voercome the drag force is given by

P=\frac{\Delta E}{t}

where

\Delta E is the increase in internal energy due to the air drag

t is the time elapsed

Here we have:

\Delta E=69780 J

t = 8.69 s is the time elapsed

Substituting,

P=\frac{69780}{8.69}=8030 W

And we see that it is about twice larger than the power calculated in part c.

3 0
3 years ago
Which of the following is a terrestrial habitat?<br>A) Pond B) Garden C) Lake D) River​
kenny6666 [7]

Answer:

garden

Explanation: All the other habitats are aquatic

8 0
3 years ago
Other questions:
  • A body moving with a velocity of 20 m/s begins to accelerate at 3 m/s2. How far does the body move in 5 seconds?
    13·2 answers
  • State one function of pupil of and eye
    11·1 answer
  • Two charges of 15 pC and −40 pC are inside a cube with sides that are of 0.40-m length. Determine the net electric flux through
    12·1 answer
  • Air undergoes dielectric breakdown at a field strength of 3 MV/m. Could you store energy in an electric field in air with the sa
    14·1 answer
  • Which of the following values has the greatest number of significant figures? Justify your answer?
    8·1 answer
  • Blank is the of matter in an object.​
    6·2 answers
  • Newton discovered that gravity behaves differently in space than it does on Earth. true or false?
    12·1 answer
  • A beam of light has a wavelength of 549nm in a material of refractive index 1.50. In a different material of refractive index 1.
    14·1 answer
  • A bus increases iys velocity from 20m/s to 30m/s in 2 seconds. Find ots acceleration<br>​
    11·2 answers
  • Developing a Claim
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!