Heya user☺☺
All options are wrong here.
The correct answer is..
Work/Time.
Hope this will help☺☺
The initial position of the object was found to be 134.09 m.
<u>Explanation:</u>
As displacement is the measure of difference between the final and initial points. In other words, we can say that displacement can be termed as the change in the position of the object irrespective of the path followed by the object to change the path. So
Displacement = Final position - Initial position.
As the final position is stated as -55.25 meters and the displacement is also stated as -189.34 meters. So the initial position will be
Initial position of the object = Final position-Displacement
Initial position = -55.25 m - (-189.34 m) = -55.25 m + 189.34 m = 134.09 m.
Thus, the initial position for the object having a displacement of -189.34 m is determined as 134.09 m.
Answer:
Current- the flow of free charges, such as electrons and ions
Drift velocity- the average speed at which these charges move
Answer: The question has some missing details. The initial velocity given as u = -6.5i + 17j + 13k and the final velocity v = -2.8i + 17j -9.3k.
a) = (1.82i - 9.69k)m/s2
b) magnitude = 9.85m/s2
c) direction = 280.64 degree
Explanation:
The detailed and step is shown in the attachment.
<h2>Thus the force of friction is 235 N</h2>
Explanation:
When the bear was at the height of 14 m . Its potential energy = m g h
here m is the mass of bear , g is acceleration due to gravity and h is the height .
Thus P.E = 27 x 10 x 14 = 3780 J
The K.E of the bear just before hitting =
m v²
=
x 27 x ( 6.1 )² = 490 J
The force of friction f = P.E - K.E = 3290 J
Because the work done = Force x Distance
Thus frictional force =
= 235 N