1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
LuckyWell [14K]
3 years ago
8

Given that the acceleration of gravity at the surface of Mars is0.38 of what it is one Earth, and that Mars' radius is 3400 km,d

etermine the mass of Mars.
Physics
1 answer:
evablogger [386]3 years ago
4 0

Answer:

1.156\times 10^{24}\ kg

Explanation:

Given:

Gravity of Mars = 0.38 times the gravity at Earth

Gravity of Earth is, g_{Earth}=9.8\ m/s^2

Radius of Mars (R) = 3400 km

Mass of mars (M) = ?

We know that, the acceleration due to gravity  of a planet of mass 'M' and radius 'R' is given as:

g=\dfrac{GM}{R^2}

Now, as per question:

g_{Mars}=0.68g_{Earth}

Plug in 9.8 for g_{Earth} and solve for g_{Mars}. This gives,

g_{Mars}=0.68\times 9.8=6.67\ m/s^2

Now, plug in this value in the above equation and solve for 'M'. This gives,

6.67=\frac{6.67\times 10^{-11}M}{(3400\times 10^3)^2}\\\\1.156\times 10^{13}=10^{-11}M\\\\M=\frac{1.156\times 10^{13}}{10^{-11}}\\\\M=1.156\times 10^{24}\ kg

Therefore, the mass of Mars is 1.156\times 10^{24}\ kg.

You might be interested in
En un instante pasa por A un cuerpo con MRU de 20 m/seg, 5 segundos después pasa en su persecución, por el mismo punto A otro cu
sukhopar [10]

Answer:

Los cuerpos se encuentran luego de 15 segundos a los 300 metros.

Explanation:

El movimiento rectilíneo uniforme (MRU) es el movimiento que describe un cuerpo o partícula a través de una línea recta a velocidad constante. Es decir, que en este caso el movimiento es lineal en una única dirección  y la velocidad de desplazamiento es constante.

La posición del cuerpo después de un tiempo se calcula a partir de la posición inicial y de la velocidad del cuerpo mediante la expresión:

x=x0+v⋅t

donde:

  • x0 es la posición inicial.
  • v es la velocidad que tiene el cuerpo a lo largo del movimiento.
  • t es el intervalo de tiempo durante el cual se mueve el cuerpo.

En este caso, si el tiempo empleado por el primer cuerpo es t, el del segundo que sale 5 segundos más tarde será t-5. Siendo la velocidad del primer cuerpo 20 m/s y la del segundo cuerpo 30 m/s, entones la posición de cada uno será:

x1 = 20 m/s* t

x2 = 30 m/s* (t - 5 s)

Ambos se encuentran cuando sus posiciones son iguales:

x2=x1

30*(t - 5) = 20*t

30*t - 30*5= 20*t

30*t - 150 = 20 t

30*t - 20*t= 150

10*t= 150

t= 150÷10

t=15 segundos

Reemplazando en la expresiones de posición obtienes:

x1 = 20 m/s* 15 s= 300 m

x2 = 30 m/s* (15 s - 5 s)= 300 m

<u><em>Los cuerpos se encuentran luego de 15 segundos a los 300 metros.</em></u>

3 0
3 years ago
An object of mass m is traveling in a circle with centripetal force f c if the velocity of the object is v what is the radius of
Juli2301 [7.4K]
Is there more information to this ?
7 0
3 years ago
Read 2 more answers
Put the stages of the sun's predicted evolution in order from beginning to end. beginning answer 1 . answer 2 . answer 3 end ans
Alex_Xolod [135]
<span>The four main stages of the sun's predicted evolution in order from beginning to end are as follows: main sequence (when a star's core is fusing hydrogen); red giant (larger star, where no hydrogen remains in the core); planetary nebula (surrounds an aging star; ring shaped nebula made of gas); and white dwarf (smaller star that tends to be as large as an actual planet; after nebula state).</span>
4 0
3 years ago
A pmdc has a stall torque of 10 and maximum mechanical power of 200. What is the maximum angular velocity?
Nadusha1986 [10]

Answer:

The maximum angular velocity is 20 rad/s

Explanation:

Given;

torque, τ = 10 N

maximum mechanical power, P = 200 J/s

The output power of the pmdc is given as;

P = τω

where;

P is the maximum mechanical power

ω is the maximum angular velocity

ω = P / τ

ω = (200) / (10)

ω = 20 rad/s

Therefore, the maximum angular velocity is 20 rad/s

6 0
3 years ago
An object with a mass of 5 kg is swung in a vertical circle by a rope with a length of 0.67 m. The tension at the bottom of the
svetoff [14.1K]

Answer:

T_2=39.5N

Explanation:

From the question we are told that:

Mass m=5kg

Length L=0.67m

Tension T=88N

Generally the equation for Tension is mathematically given by

 T = m * ( g + v^2 /l)

Therefore

 T_1 = m * ( g + \frac{v^2}{l})

 88 = 5 * ( 9.8 + \frac{v^2}{0.67})

 v^2=5.2

 v=2.4m/s

The uniform velocity is

 v=2.4m/s

Therefore

The tension at the side of the circle halfway between the top and bottom is

 T_2=5*\frac{2.3^2}{0.67}

 T_2=39.5N

8 0
3 years ago
Other questions:
  • a plane is flying 120 m above the ground at an angle of 30 degrees to the horizontal, when the pilot released 2 fuel tanks to de
    8·1 answer
  • Describe the gases that are emitting from a volcanic eruption. What affect do they have on the atmosphere and planet?
    5·1 answer
  • Help I don’t understand this question
    5·1 answer
  • Two skaters collide and grab on to each other on frictionless ice. One of them, of mass 66.0 kg , is moving to the right at 2.00
    13·1 answer
  • For the past few days, the weather in Miami has been cool. When the temperature did warm up, the meteorologists noticed that it
    7·1 answer
  • An automobile tire is inflated with air originally at 10.0°C and normal atmospheric pressure. During the process, the air is com
    5·1 answer
  • What type(s) of energy is/are contained in a roller coaster car after it has come to a complete stop at the station? A. kinetic
    11·1 answer
  • when an apple falls towards the earth,the earth moves up to meet the apple.is this true ?if yes,why is the earth's motion not no
    15·1 answer
  • 30 points! to who helps me out
    15·1 answer
  • If an airplane were traveling eastward with a thrust force 450 N and there was a tailwind of 200 N, what would the resulting net
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!